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Short-Wave Limit of Hydrodynamics: A Soluble Example
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The Chapman-Enskog series for shear stress is summed up in a closed form for a simple model
of Grad moment equations. The resulting linear hydrodynamics is demonstrated to be stable for all

wavelengths, and the exact asymptotic of the acoustic spectrum in the short-wave domain is obtained.
[S0031-9007(96)00642-4]
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A derivation of hydrodynamics from the Boltzmann ki-  Throughout the Lettely andu are dimensionless devia-
netic equation is the classical problem of physical kineticstions of pressure and of mean flux from their equilibrium
The Chapman-Enskog (CE) method [1] gives, in principle values, respectively (see Ref. [4] for relations of these vari-
a possibility to compute a solution as a formal series imables to dimensional quantities). The point of departure is
powers of Knudsen number(wheree is a ratio between the set of linearized Grad equations [4] fpr «, and o,
the mean free path of a particle and the scale of variationwhereo is a dimensionlessx component of stress tensor,
of hydrodynamic quantities, density, mean flux, and tem-

perature). The CE solution leads to a formal expansion of 5

stress tensor and of heat flux vector in balance equations for dp = 3 It

density, momentum, and energy. Retaining the first order

term (e) in the latter expansions, we come to the Navier- diu = —dyp — 0x0, 1)
Stokes equations, while further corrections are known as 4 1

the Burnett €2) and the super-Burnett{) corrections [1]. 0,0 = 3 Oxu — e 7

However, as demonstrated by Bobylev [2], even in the

simplest regime (one-dimensional linear deviation from Equation (1) provides the simplest model of a coupling

global .equil_ibria), the Bu_rnett a_nd supfer—Burnett hydro'of the hydrodynamic variables,and p, to the nonhydro-
dynamics violate the basic physics behind the Boltzmanrcljymj‘miC variabler, and corresponds to a heat nonconduc-

gquatio_n. N.am?'y' §ufficient|y short_ acoust_ic Waves arge case. Of course, Eq. (1) is almost trivial. However,
increasing with time instead of decaying. This contradlct%ur goal here is not to investigate its properties but to

the H theorem, since all near-equilibrium pertgrbathr}sshortemhe description, and to get a closed set of equations
must decay. It should also be noted that the 'nStab'“tX/vith respect to variablep andu only. That is, we have

of equilibria Just mgntloned IS not a featurg of the Navier-y, express the functionr in terms of spatial derivatives of
Stokes approximation where waves of arbitrary length are

: : NS R ~p and ofu. The CE method as applied to Eq. (1) results
decaying, though this approximation is formally not valid ” " . PP a- ()
) . ) " 7 in the following [5]:
in a short-wave domain. A possible root of this violation
is poor convergency properties of CE series, and this, in o
particular, creates serious difficulties for an extension of OCcg = Z e"a™, 2
hydrodynamics, as derived from a microscopic description, n=0
into a highly nonequilibrium domain. The latter problem
remains one of the central open problems of the Boltzman
equation theory, in particular, and of the physical kinetics

fhe coefficientssr™ are due to the following recurrence
procedure [4]:

in general. n—1
In this Letter we consider the CE procedure for a simple o == gim g n=t=m). 3)
model of nonhydrodynamic description (one-dimensional m=0

linearized 10-moment Grad equations [3]). The CE series, (m) _
which is due to aonlinearprocedure even here and which Where the CE operatoi& " act onp, onu, and on their
also suffers the Bobylev instability in low-order approxi- SPatial derivatives as follows:

mations, is summed up in a closed form. This result leads

to a quantitative discussion of the CE solution in a short- gl —oltlp, m=0,

wave domain in frames of the model, and to a prelimi- rooxi T —oltlgm=l "y =1,

nary discussion of what can be expected in more realistic 4)
models. Exact results on the CE method for other Grad a(m)al _ {—%afflu, m =0,

moment systems will be reported elsewhere. rooP 0, m =1
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Here [ = 0 is an arbitrary integer, and? = 1. Fi-  condition of a nontrivial solubility of a set of two linear
nally, c© = —%axu, which leads to the Navier-Stokes equations with respect td and p. The result of these
approximation. standard manipulations reads

Because of a somewhat involved structure of the recur-
[ in- k%A k 20
rence procedure (3) and (4), the CE method is a nonlin 0. = KA L |k| eaz - 20 - B, (@
ear operation even in the simplest model (1). Moreover, 2 2 3
as was shown in [4], the Bobylev instability is present:

the Navier-Stokes and Burnett appI’OXimationS are Stable, Now we will concentrate on a problem ofa Computation
while the super-Burnett approximation is unstable for sufuf the functionsA andB (7) in a closed form. Substituting
ficiently short waves. Eq. (5) into Egs. (3) and (4), after some computations,

Our goal now is tosum upthe series (2) in a closed we arrive at the following recurrence equations for the
form. First, we will make some preparations. As wascoefficientsa, andb, in the power series (7):

demonstrated in [4], the functiorns™ in Egs. (2) and (3)
have the following structure for arbitrary = 0:

5 n
an+1 = gbn + Z An—mQm 5

0_(211) _ ana)ZCrH—lu’ 0_(211+1) _ bnai(}“—l)[) , (5) m=0 (9)
n
where numbers:, and b, are due to the recurrent pro- bpy1 = ant1 + Z An—mbm .
cedure (3) and (4). Further, it is convenient to make m=0

the Fourier transform. Using a new space-time scal
I — -1
X = €

S

®The initial condition for this set of equationsdg = —

x, and ¢ = € !t, and next representing = andbo — —*
ap(x',t"), p = pe(x',t'), where p(x',t') = explwt’ + 0= 3 . .
ikx'), andk is a real-valued wave vector, we obtaipg = At this point, it is worthwhile to notice that usual
Fepo(x'. 1), where routes of dealing with .the recurrence system (9) would
CE o be either to truncate it at a certaim or to calculate
ocp(k) = ikA(D)a — K2B(K)p (6) all the_coefficients explici_tly, and next to substitute the
result into the power series (7). Both these routes are
and not successful here. Indeed, retaining the coefficiefts

by, and a; gives the super-Burnett approximation which
; - ) has the short-wave instability fa® > 3 [4], and there is
A(k?) = Zoa"(_kz) ’ B(k?) = Zob"(_kz) - M ho guarantee that the same will not occur in a higher-
" " order truncation. On the other hand, a term-by-term
Thus, the question of summation of the CE series (2romputation of the whole set of coefficiends and b,
amounts to finding the two functiongi(k?) and B(k?) is a quite nontrivial task due to a nonlinearity in Eq. (9).
(7). KnowingA andB, we derive a dispersion relation for  Fortunately, another route is possible. Multiplying both
acoustic wavesg (k), upon a substitution of the function the equations in (9) with(—2)"*!, and performing a
ocg = Ocge into the second of Egs. (1), and from |a summation i from zero to infinity, we get

o

5 C < -m m
A —ay= —K? ?B + nzzomzoanfm(_kz)n am(_kz) s

B—by=A—ay—k>D D aum(—k)""b, (kA"

n=0m=0
Now we notice that | The result (10) concludes essentially the question of
computation of functionsA and B (7). Still, further
Xy —_— om 5 simplifications are possible. In particular, it is convenient
lim, DD anem(— k) M an(— k)" = A%, to reduce a consideration to a single function. Resolving
”;0’"=0 the system (10) with respect ® and introducing a new
lim Z Z ay (k2" "b, (—k2)" = AB. functpn, C(k*) = k-B(k*), we get an equivalent cubic
N—seo S = equation,
Accountingay = by = —3, we come to a pair of coupled —;(C - 1)l C + 5) " e (12)

quadratic equations for functiomsandB,

. S Since functionsA and B (7) are real valued, we are in-
A= -3 — k3B + AY), B =A(1 — k*B). (10) terested only in real-valued roots of Eq. (11). Elementary
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analysis of this equation gives the following resulie  extension of hydrodynamics into a highly nonequilibrium
real-valued rootC(k?) is unique and negative for all finite domain (into a short-wave domain here) on a basis of
values of parametek?. Moreover, the functiorC(k?) is  exact solutions. Exact dispersion relation (13) in the

a monotonic function ok?. Limiting values are CE procedure is demonstrated to be stable for all wave-
lengths [8]. It is also remarkable that the result of the CE
lim C(k%) = 0, lim C(k2) = _i. (12) procedure has a clear npnpolynomial charapter [9]. As

|k|—0 lfe|—o0 5 a conjecture here, resulting hydrodynamicessentially

nonlocal in space.
(2) Concerning a derivation of hydrodynamics in a
ghly nonequilibrium domain from the Boltzmann equa-
tions, the situation is, perhaps, not too promising in the
sense of an exact summation as above. In this respect,
C k| [5¢? = 16C + 20 exact results can serve for either a test of approximate pro-
W+ = m * s 3 > (13) cedgres or at least foragwde. It is rather remarkable that
earlier results on a “partial summing” of recurrence rela-

whereC = C(k?) is the real-valued root of Eq. (11), and tions such as (3) performed for various Grad moment sys-
i = /—1. Since C(k?) is a negative function for all temsin[4,6]are in qualitative agreement with the result of
|k| > 0, the damping rat€iiw-, is negative for allk| >  this Letter. In particular, as applied to the simplest model
0, and the exact acoustic spectrum of the CE proceiure (1) [4], this approximate method leads to the short-wave

stable for arbitrary wavelengthsin the short-wave limit, asymptotics of the form (14) with other values of constants,
expression (13) gives and it amounts, in fact, to an approximation of the function

C (k) with a rational function like—k*(1 + ak?)~'.
im w. — 2 + ilkIV3. (14) Moreover,_a quite different approach [1Q] which_d_erives
Ik =2 9 hydrodynamics from the Boltzmann equation avoiding the
route of expansions in powers of Knudsen number leads
As the final comment here, Eq. (14) demonstrates a teragain to a nonlocal hydrodynamics (in the linearized one-
dency of the damping rat8jw -, to a finite value,—é =~  dimensional case) with features similar to those demon-
—0.22, as |k| — . This asymptotics is in complete strated above. The result of this Letter demonstrates that,
agreement with the data for the hydrodynamic branch oét least in simple cases, tsamof the CE series amounts
the spectrum of the originating Eq. (1), investigated nu+to a quite regular function, and the “smallness” of Knud-
merically in [6] (see also Ref. [7]). We conclude with a sen numbeg used to develop the CE procedure 8no
discussion. longer necessary at the outcom@&his final comment en-
(1) To our knowledge, the example considered aboveourages a search for approximate procedures, different
gives the first opportunity to treat the problem of anfrom the CE original method and not basadpriori on
a small parameter expansion, and further work on relation-
ships between different approaches to hydrodynamics in a
highly nonequilibrium domain.
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The functionC(k?) is plotted in Fig. 1.
Under the circumstances just mentioned, a functioq1i

under the root in Eq. (8) is negative for &l including

the limits, and we come to the following dispersion law:
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