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Short-Wave Limit of Hydrodynamics: A Soluble Example
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The Chapman-Enskog series for shear stress is summed up in a closed form for a simple
of Grad moment equations. The resulting linear hydrodynamics is demonstrated to be stable
wavelengths, and the exact asymptotic of the acoustic spectrum in the short-wave domain is ob
[S0031-9007(96)00642-4]
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A derivation of hydrodynamics from the Boltzmann k
netic equation is the classical problem of physical kineti
The Chapman-Enskog (CE) method [1] gives, in princip
a possibility to compute a solution as a formal series
powers of Knudsen numbere (wheree is a ratio between
the mean free path of a particle and the scale of variati
of hydrodynamic quantities, density, mean flux, and te
perature). The CE solution leads to a formal expansion
stress tensor and of heat flux vector in balance equation
density, momentum, and energy. Retaining the first or
term (e) in the latter expansions, we come to the Navie
Stokes equations, while further corrections are known
the Burnett (e2) and the super-Burnett (e3) corrections [1].

However, as demonstrated by Bobylev [2], even in t
simplest regime (one-dimensional linear deviation fro
global equilibria), the Burnett and super-Burnett hydr
dynamics violate the basic physics behind the Boltzma
equation. Namely, sufficiently short acoustic waves a
increasing with time instead of decaying. This contradi
the H theorem, since all near-equilibrium perturbatio
must decay. It should also be noted that the instabi
of equilibria just mentioned is not a feature of the Navie
Stokes approximation where waves of arbitrary length
decaying, though this approximation is formally not val
in a short-wave domain. A possible root of this violatio
is poor convergency properties of CE series, and this
particular, creates serious difficulties for an extension
hydrodynamics, as derived from a microscopic descripti
into a highly nonequilibrium domain. The latter proble
remains one of the central open problems of the Boltzma
equation theory, in particular, and of the physical kineti
in general.

In this Letter we consider the CE procedure for a simp
model of nonhydrodynamic description (one-dimension
linearized 10-moment Grad equations [3]). The CE ser
which is due to anonlinearprocedure even here and whic
also suffers the Bobylev instability in low-order approx
mations, is summed up in a closed form. This result lea
to a quantitative discussion of the CE solution in a sho
wave domain in frames of the model, and to a prelim
nary discussion of what can be expected in more reali
models. Exact results on the CE method for other G
moment systems will be reported elsewhere.
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Throughout the Letter,p andu are dimensionless devia
tions of pressure and of mean flux from their equilibriu
values, respectively (see Ref. [4] for relations of these va
ables to dimensional quantities). The point of departure
the set of linearized Grad equations [4] forp, u, ands,
wheres is a dimensionlessxx component of stress tenso

≠tp ­ 2
5
3

≠xu ,

≠tu ­ 2≠xp 2 ≠xs , (1)

≠ts ­ 2
4
3

≠xu 2
1
e

s .

Equation (1) provides the simplest model of a coupli
of the hydrodynamic variables,u andp, to the nonhydro-
dynamic variables, and corresponds to a heat noncondu
tive case. Of course, Eq. (1) is almost trivial. Howeve
our goal here is not to investigate its properties but
shortenthe description, and to get a closed set of equati
with respect to variablesp andu only. That is, we have
to express the functions in terms of spatial derivatives o
p and ofu. The CE method as applied to Eq. (1) resu
in the following [5]:

sCE ­
X̀
n­0

en11ssnd. (2)

The coefficientsssnd are due to the following recurrenc
procedure [4]:

ssnd ­ 2

n21X
m­0

≠
smd
t ssn212md, (3)

where the CE operators≠
smd
t act onp, on u, and on their

spatial derivatives as follows:

≠
smd
t ≠l

xu ­

(
2≠l11

x p, m ­ 0 ,
2≠l11

x ssm21d, m $ 1 ,

≠
smd
t ≠l

xp ­

Ω
2

5
3 ≠l11

x u, m ­ 0 ,
0, m $ 1 .

(4)
© 1996 The American Physical Society



VOLUME 77, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JULY 1996

s

cu
lin
e

nt
bl
uf

d
as

-
ke
ale

(2

r
n
a

r

n

ns,
he

l
ld

e
are

h

er-
rm

.
th
Here l $ 0 is an arbitrary integer, and≠0
x ­ 1. Fi-

nally, ss0d ­ 2
4
3 ≠xu, which leads to the Navier-Stoke

approximation.
Because of a somewhat involved structure of the re

rence procedure (3) and (4), the CE method is a non
ear operation even in the simplest model (1). Moreov
as was shown in [4], the Bobylev instability is prese
the Navier-Stokes and Burnett approximations are sta
while the super-Burnett approximation is unstable for s
ficiently short waves.

Our goal now is tosum upthe series (2) in a close
form. First, we will make some preparations. As w
demonstrated in [4], the functionsssnd in Eqs. (2) and (3)
have the following structure for arbitraryn $ 0:

ss2nd ­ an≠2n11
x u, ss2n11d ­ bn≠2sn11d

x p , (5)

where numbersan and bn are due to the recurrent pro
cedure (3) and (4). Further, it is convenient to ma
the Fourier transform. Using a new space-time sc
x0 ­ e21x, and t0 ­ e21t, and next representingu ­
ûwsx0, t0d, p ­ p̂wsx0, t0d, where wsx0, t0d ­ expsvt0 1

ikx0d, andk is a real-valued wave vector, we obtainsCE ­
ŝCEwsx0, t0d, where

ŝCEskd ­ ikAsk2dû 2 k2Bsk2dp̂ (6)

and

Ask2d ­
X̀
n­0

ans2k2dn, Bsk2d ­
X̀
n­0

bns2k2dn. (7)

Thus, the question of summation of the CE series
amounts to finding the two functions,Ask2d and Bsk2d
(7). KnowingA andB, we derive a dispersion relation fo
acoustic waves,vskd, upon a substitution of the functio
sCE ­ ŝCEw into the second of Eqs. (1), and from
r-
-

r,
:
e,
-

,

)

condition of a nontrivial solubility of a set of two linea
equations with respect tôu and p̂. The result of these
standard manipulations reads

v6 ­
k2A

2
6

jkj

2

s
k2A2 2

20
3

s1 2 k2Bd . (8)

Now we will concentrate on a problem of a computatio
of the functionsA andB (7) in a closed form. Substituting
Eq. (5) into Eqs. (3) and (4), after some computatio
we arrive at the following recurrence equations for t
coefficientsan andbn in the power series (7):

an11 ­
5
3

bn 1

nX
m­0

an2mam ,

bn11 ­ an11 1

nX
m­0

an2mbm .

(9)

The initial condition for this set of equations isa0 ­ 2
4
3

andb0 ­ 2
4
3 .

At this point, it is worthwhile to notice that usua
routes of dealing with the recurrence system (9) wou
be either to truncate it at a certainn, or to calculate
all the coefficients explicitly, and next to substitute th
result into the power series (7). Both these routes
not successful here. Indeed, retaining the coefficientsa0,
b0, and a1 gives the super-Burnett approximation whic
has the short-wave instability fork2 . 3 [4], and there is
no guarantee that the same will not occur in a high
order truncation. On the other hand, a term-by-te
computation of the whole set of coefficientsan and bn

is a quite nontrivial task due to a nonlinearity in Eq. (9)
Fortunately, another route is possible. Multiplying bo

the equations in (9) withs2k2dn11, and performing a
summation inn from zero to infinity, we get
A 2 a0 ­ 2k2

(
5
3

B 1
X̀
n­0

nX
m­0

an2ms2k2dn2mams2k2dm

)
,

B 2 b0 ­ A 2 a0 2 k2
X̀
n­0

nX
m­0

an2ms2k2dn2mbms2k2dm.
of

nt
ing

-
ry
Now we notice that

lim
N!`

NX
n­0

nX
m­0

an2ms2k2dn2mams2k2dm ­ A2,

lim
N!`

NX
n­0

nX
m­0

an2ms2k2dn2mbms2k2dm ­ AB .

Accountinga0 ­ b0 ­ 2
4
3 , we come to a pair of coupled

quadratic equations for functionsA andB,

A ­ 2
4
3 2 k2s 5

3 B 1 A2d, B ­ As1 2 k2Bd . (10)
The result (10) concludes essentially the question
computation of functionsA and B (7). Still, further
simplifications are possible. In particular, it is convenie
to reduce a consideration to a single function. Resolv
the system (10) with respect toB, and introducing a new
function, Csk2d ­ k2Bsk2d, we get an equivalent cubic
equation,

2
5
3

sC 2 1d2

µ
C 1

4
5

∂
­

C
k2

. (11)

Since functionsA and B (7) are real valued, we are in
terested only in real-valued roots of Eq. (11). Elementa
283
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analysis of this equation gives the following result:the
real-valued rootCsk2d is unique and negative for all finite
values of parameterk2. Moreover, the functionCsk2d is
a monotonic function ofk2. Limiting values are

lim
jkj!0

Csk2d ­ 0, lim
jkj!`

Csk2d ­ 2
4
5

. (12)

The functionCsk2d is plotted in Fig. 1.
Under the circumstances just mentioned, a funct

under the root in Eq. (8) is negative for allk, including
the limits, and we come to the following dispersion law

v6 ­
C

2s1 2 Cd
6 i

jkj

2

s
5C2 2 16C 1 20

3
, (13)

whereC ­ Csk2d is the real-valued root of Eq. (11), an
i ­

p
21. Since Csk2d is a negative function for all

jkj . 0, the damping rate,Rv6, is negative for alljkj .

0, and the exact acoustic spectrum of the CE proceduris
stable for arbitrary wavelengths.In the short-wave limit,
expression (13) gives

lim
jkj!`

v6 ­ 2
2
9

6 ijkj
p

3 . (14)

As the final comment here, Eq. (14) demonstrates a t
dency of the damping rate,Rv6, to a finite value,2 2

9 ø
20.22, as jkj ! `. This asymptotics is in complete
agreement with the data for the hydrodynamic branch
the spectrum of the originating Eq. (1), investigated n
merically in [6] (see also Ref. [7]). We conclude with
discussion.

(1) To our knowledge, the example considered abo
gives the first opportunity to treat the problem of a

FIG. 1. Real-valued root of Eq. (11) as a function ofk2.
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extension of hydrodynamics into a highly nonequilibriu
domain (into a short-wave domain here) on a basis
exact solutions. Exact dispersion relation (13) in t
CE procedure is demonstrated to be stable for all wa
lengths [8]. It is also remarkable that the result of the C
procedure has a clear nonpolynomial character [9].
a conjecture here, resulting hydrodynamics isessentially
nonlocal in space.

(2) Concerning a derivation of hydrodynamics in
highly nonequilibrium domain from the Boltzmann equ
tions, the situation is, perhaps, not too promising in t
sense of an exact summation as above. In this resp
exact results can serve for either a test of approximate p
cedures or at least for a guide. It is rather remarkable t
earlier results on a “partial summing” of recurrence re
tions such as (3) performed for various Grad moment s
tems in [4,6] are in qualitative agreement with the result
this Letter. In particular, as applied to the simplest mod
(1) [4], this approximate method leads to the short-wa
asymptotics of the form (14) with other values of constan
and it amounts, in fact, to an approximation of the functi
Csk2d with a rational function like2k2s1 1 ak2d21.

Moreover, a quite different approach [10] which derive
hydrodynamics from the Boltzmann equation avoiding t
route of expansions in powers of Knudsen number lea
again to a nonlocal hydrodynamics (in the linearized on
dimensional case) with features similar to those dem
strated above. The result of this Letter demonstrates t
at least in simple cases, thesumof the CE series amounts
to a quite regular function, and the “smallness” of Knu
sen numbere used to develop the CE procedure (3)is no
longer necessary at the outcome. This final comment en-
courages a search for approximate procedures, diffe
from the CE original method and not baseda priori on
a small parameter expansion, and further work on relati
ships between different approaches to hydrodynamics
highly nonequilibrium domain.
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