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Abstract

The method of invariant manifold is developed for a derivation of reduced description in kinetic
equations of dilute polymeric solutions. It is demonstrated that this reduced description becomes
universal in the limit of small Deborah and Weissenberg numbers, and it is represented by the
(revised) Oldroyd 8 constants constitutive equation for the polymeric stress tensor. Coe�cients
of this constitutive equation are expressed in terms of the microscopic parameters. A systematic
procedure of corrections to the revised Oldroyd 8 constants equations is developed. Results are
tested with simple 
ows. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Kinetic equations arising in the theory of polymer dynamics constitute a wide class
of microscopic models of complex 
uids. Same as in any branch of kinetic theory,
the problem of reduced description becomes actual as soon as the kinetic equation is
established. However, in spite of an enormous amount of work in the �eld of polymer
dynamics [1–4], this problem remains less studied as compared to other classical kinetic
equations.
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It is the purpose of this paper to suggest a systematic approach to the problem of
reduced description for kinetic models of polymeric 
uids. First, we would like to
specify our motivation by comparing the problem of the reduced description for that
case with a similar problem in the familiar case of the rare�ed gas obeying the classical
Boltzmann kinetic equation [5,6].
The problem of reduced description begins with establishing a set of slow variables.

For the Boltzmann equation, this set is represented by �ve hydrodynamic �elds (density,
momentum and energy) which are low-order moments of the distribution function, and
which are conserved quantities of the dissipation process due to particle’s collisions.
The reduced description is a closed system of equations for these �elds. One starts with
the manifold of local equilibrium distribution functions (local Maxwellians), and �nds
a correction by the Chapman–Enskog method [6]. The resulting reduced description
(the Navier–Stokes hydrodynamic equations) is universal in the sense that the form of
equations does not depend on details of particle’s interaction whereas the latter shows
up explicitly only in the transport coe�cients (viscosity, temperature conductivity,
etc.).
Coming back to the complex 
uids, we shall consider the simplest case of dilute

polymer solutions represented by dumbbell models studied below. Two obstacles pre-
clude an application of the traditional techniques. First, the question which variables
should be regarded as slow is at least less evident because the dissipative dynamics in
the dumbbell models has no nontrivial conservation laws compared to the Boltzmann
case. Consequently, a priori, there are no distinguished manifolds of distribution func-
tions like the local equilibria which can be regarded as a starting point. Second, while
the Boltzmann kinetic equation provides a self-contained description, the dumbbell
kinetic equations are coupled to the hydrodynamic equations. This coupling manifests
itself as an external 
ux in the kinetic equation.
The well-known distinguished macroscopic variable associated with the dumbbell

kinetic equations is the polymeric stress tensor [1]. This variable is not the conserved
quantity but, nevertheless, it should be treated as a relevant slow variable because
it actually contributes to the macroscopic (hydrodynamic) equations. Equations for
the stress tensor are known as the constitutive equations, and the problem of reduced
description for the dumbbell models consists in deriving such equations from the kinetic
equation.
Our approach is based on the method of invariant manifold [7], modi�ed for sys-

tems coupled with external �elds. This method suggests constructing invariant sets (or
manifolds) of distribution functions that represent the asymptotic states of slow evo-
lution of the kinetic system. In the case of dumbbell models, the reduced description
is produced by equations which constitute stress–strain relations, and two physical re-
quirements are met by our approach: The �rst is the principle of frame-indi�erence
with respect to any time-dependent reference frame. This principle requires that the
resulting equations for the stresses contain only frame-indi�erent quantities. For exam-
ple, the frame-dependent vorticity tensor should not show up in these equations unless
being presented in frame-indi�erent combinations with another tensors. The second
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principle is the thermodynamic stability: In the absence of the 
ow, the constitutive
model should be purely dissipative, in other words, it should describe the relaxation of
stresses to their equilibrium values.
The physical picture addressed below takes into account two assumptions: (i) In

the absence of the 
ow, deviations from the equilibrium are small. Then the invariant
manifold is represented by eigenvectors corresponding to the slowest relaxation modes.
(ii) When the external 
ow is taken into account, it is assumed to cause a small defor-
mation of the invariant manifolds of the purely dissipative dynamics. Two characteristic
parameters are necessary to describe this deformation. The �rst is the characteristic time
variation of the external �eld. The second is the characteristic intensity of the exter-
nal �eld. For dumbbell models, the �rst parameter is associated with the conventional
Deborah number while the second one is usually called the Weissenberg number. An
iteration approach which involves these parameters is developed.
Two main results of the analysis are as follows: First, the lowest-order constitu-

tive equations with respect to the characteristic parameters mentioned above has the
form of the revised phenomenological Oldroyd 8 constants model. This result is in-
terpreted as the macroscopic limit of the microscopic dumbbell dynamics whenever
the rate of the strain is low, and the Deborah number is small. This limit is valid
generically, in the absence or in the presence of the hydrodynamic interaction, and
for the arbitrary nonlinear elastic force. The phenomenological constants of the Ol-
droyd model are expressed in a closed form in terms of the microscopic parameters
of the model. The universality of this limit is similar to that of the Navier–Stokes
equations which are the macroscopic limit of the Boltzmann equation at small Knud-
sen numbers for arbitrary hard-core molecular interactions. The test calculation for the
nonlinear FENE force demonstrates a good quantitative agreement of the constitutive
equations with solutions to the microscopic kinetic equation within the domain of their
validity.
The second result is a regular procedure of �nding corrections to the zero-order

model. These corrections extend the model into the domain of higher rates of the
strain, and to 
ows which alternate faster in time. Same as in the zero-order approx-
imation, the higher-order corrections are linear in the stresses, while their dependence
on the gradients of the 
ow velocity and its time derivatives becomes highly nonlin-
ear. These corrections have a similar meaning as the higher-order (Burnett) correc-
tions in the Chapman–Enskog method though, again, the actual form of equations is
di�erent.
The paper is organized as follows: For the sake of completeness, we present the

nonlinear dumbbell kinetic models in the next section. In Section 3, we describe in
details our approach to the derivation of macroscopic equations for an abstract kinetic
equation coupled to external �elds. This derivation is applied to the dumbbell models
in Section 4. The zero-order constitutive equation is derived and discussed in detail
in this section, as well as the structure of the �rst correction. Tests of the zero-order
constitutive equation for simple 
ow problems are given in Section 5.
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2. The problem of reduced description in polymer dynamics

2.1. Elastic dumbbell models

The elastic dumbbell model is the simplest microscopic model of polymer solutions
[1]. The dumbbell model re
ects the two features of real-world macromolecules to be
orientable and stretchable by a 
owing solvent. The polymeric solution is represented
by a set of identical elastic dumbbells placed in an isothermal incompressible liquid.
Let Q be the connector vector between the beads of a dumbbell, and 	(x;Q; t) be
the con�guration distribution function which depends on the location in the space
x at time t. We assume that dumbbells are distributed uniformly, and consider the
normalization,

∫
	(x;Q; t) dQ = 1. The Brownian motion of beads in the physical

space causes a di�usion in the phase space described by the Fokker–Planck equation
(FPE) [1]:

D	
Dt

=− @
@Q

· k ·Q	 +
2kBT
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·D ·
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	 +
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kBT
	
)

: (1)

Here D=Dt = @=@t + v · ∇ is the material derivative, ∇ is the spatial gradient, k(x; t) =
(∇v)† is the gradient of the velocity of the solvent v; † denotes transposition of tensors,
D is the dimensionless di�usion matrix, kB is the Boltzmann constant, T is the temper-
ature, � is the dimensional coe�cient characterizing a friction exerted by beads moving
through solvent media (friction coe�cient [1,2]), and F = −∇� is the elastic spring
force de�ned by the potential well �. We consider forces of the form F= Hf(Q2)Q,
where f(Q2) is a dimensionless function of the variable Q2 = Q · Q, and H is the
dimensional constant. Incompressibility of solvent implies

∑
i kii = 0.

Let us introduce a time dimensional constant

�r =
�
4H

;

which coincides with a characteristic relaxation time of dumbbell con�guration in the
case when the force F is linear: f(Q2) = 1. It proves convenient to rewrite the FPE
(1) in the dimensionless form
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: (2)

Various dimensionless quantities used are: Q̂=(H=kBT )1=2Q; D=Dt̂=@=@t̂+v·∇; t̂=t=�r
is the dimensionless time, ∇ = ∇�r is the reduced space gradient and k̂ = k�r =
(∇v)† is the dimensionless tensor of the gradients of the velocity. In the sequel, only
dimensionless quantities Q̂ and F̂ are used, and we keep notations Q and F for them
for the sake of simplicity.
The quantity of interest is the stress tensor introduced by Kramers [1]:

� =−�s
̇+ nkBT (1− 〈FQ〉) ; (3)
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where �s is the viscosity of the solvent, 
̇ = k + k† is the rate-of-strain tensor, n is
the concentration of polymer molecules, and the angle brackets stand for the averaging
with the distribution function 	 : 〈•〉 ≡ ∫ •	(Q) dQ. The tensor

�p = nkBT (1− 〈FQ〉) (4)

gives a contribution to stresses caused by the presence of polymer molecules.
The stress tensor is required in order to write down a closed system of hydrodynamic

equations

Dv
Dt
=−�−1∇p−∇ · �[	] : (5)

Here p is the pressure, and �= �s + �p is the mass density of the solution where �s
is the solvent, and �p is the polymeric contributions.
Several models of the elastic force are known in the literature. The Hookean law is

relevant to small perturbations of the equilibrium con�guration of the macromolecule:

F=Q : (6)

In that case, the di�erential equation for � is easily derived from the kinetic equation,
and is the well known Oldroyd-B constitutive model [1].
The second model, the FENE force law [8], was derived as an approximation to the

inverse Langevin force law [1] for a more realistic description of the elongation of
a polymeric molecule in a solvent:

F=
Q

1−Q2=Q20
: (7)

This force law takes into account the nonlinear sti�ness and the �nite extendibility of
dumbbells, where Q0 is the maximal extendibility.
The features of the di�usion matrix are important for both the microscopic and the

macroscopic behavior. The isotropic di�usion is represented by the simplest di�usion
matrix

DI = 1
21 : (8)

Here 1 is the unit matrix. When the hydrodynamic interaction between the beads is
taken into account, this results in an anisotropic contribution to the di�usion matrix
(8). The original form of this contribution is the Oseen–Burgers tensor DH [9,10]:

D=DI − �DH; DH =
1
Q

(
1+

QQ
Q2

)
; (9)

where

� =
(

H
kBT

)1=2 �
16��s

:

Several modi�cations of the Oseen–Burgers tensor can be found in the literature
[11,12] 2 but here we consider only the classical version.

2 More general than the Oseen–Burgers tensor, the Rotne-Prager–Yamakawa tensor was developed in Refs.
[11,12].
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2.2. Properties of the Fokker–Planck operator

Let us review some of the properties of the Fokker–Planck operator J in the right-hand
side of the Eq. (2) relevant to what will follow. This operator can be written as
J = Jd + Jh, and it represents two processes.
The �rst term, Jd, is the dissipative part,

Jd =
@
@Q

·D ·
(

@
@Q

+ F
)

: (10)

This part is responsible for the di�usion and friction which a�ect internal con�gurations
of dumbbells, and it drives the system to the unique equilibrium state,

	eq = c−1 exp(−�(Q2)) ;

where c =
∫
exp(−�) dQ is the normalization constant.

The second part, Jh, describes the hydrodynamic drag of the beads in the 
owing
solvent:

Jh =− @
@Q

· k̂ ·Q : (11)

The dissipative nature of the operator Jd is re
ected by its spectrum. We assume
that this spectrum consists of real-valued nonpositive eigenvalues, and that the zero
eigenvalue is not degenerated. In the sequel, the following scalar product will be useful:

〈g; h〉s =
∫

	−1
eq gh dQ :

The operator Jd is symmetric and nonpositive de�nite in this scalar product:

〈Jdg; h〉s = 〈g; Jdh〉s ;
〈Jdg; g〉s6 0 : (12)

Since 〈Jdg; g〉s = − ∫ 	−1
eq (@g=@Q) · 	eqD · (@g=@Q) dQ, the above inequality is valid

if the di�usion matrix D is positive semide�nite. This happens if D = DI (8) but is
not generally valid in the presence of the hydrodynamic interaction (9). Let us split
the operator Jd in accord with the splitting of the di�usion matrix D : Jd = J Id − �JHd ,
where J I;Hd =@=@Q·DI;H ·(@=@Q+F). Both the operators J Id and JHd have nondegenerated
eigenvalue 0 which corresponds to their common eigenfunction 	eq: J

I;H
d 	eq=0, while

the rest of the spectrum of both operators belongs to the nonpositive real semi-axis.
Then the spectrum of the operator Jd = J Id − �JHd remains nonpositive for su�ciently
small values of the parameter �. The spectral properties of both operators J I;Hd depend
only on the choice of spring force F. Thus, in the sequel, we assume that the hydrody-
namic interaction parameter � is su�ciently small so that the thermodynamic stability
property (12) holds.
We note that the scalar product 〈•; •〉s coincides with the second di�erential D2S|	eq

of an entropy functional S[	]: 〈•; •〉s = −D2S|	eq [•; •], where the entropy has the
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form

S[	] =−
∫

	 ln
(

	
	eq

)
dQ=

〈
ln
(

	
	eq

)〉
: (13)

The entropy S grows in the course of dissipation

DS[Jd	]¿0 :

This inequality similar to inequality (12) is satis�ed for su�ciently small �. Symme-
try and nonpositiveness of operator Jd in the scalar product de�ned by the second
di�erential of the entropy is a common property of linear dissipative systems.

2.3. Statement of the problem

Given the kinetic equation (1), we aim at deriving di�erential equations for the stress
tensor � (3). The latter includes the moments 〈FQ〉= ∫ FQ	 dQ.
In general, when the di�usion matrix is nonisotropic and=or the spring force is

nonlinear, closed equations for these moments are not available, and approximations
are required. With this, any derivation should be consistent with the three requirements:

(i) Dissipativity or thermodynamic stability: The macroscopic dynamics should be
dissipative in the absence of the 
ow.
(ii) Slowness: The macroscopic equations should represent slow degrees of freedom

of the kinetic equation.
(iii) Material frame indi�erence: The form of equations for the stresses should be

invariant with respect to the Euclidian, time dependent transformations of the reference
frame [1,13].
While these three requirements should be met by any approximate derivation, the

validity of our approach will be restricted by two additional assumptions:
(a) Let us denote �1 the inertial time of the 
ow, which we de�ne via characteristic

value of the gradient of the 
ow velocity: �1 = |∇v|−1, and �2 the characteristic time
of the variation of the 
ow velocity. We assume that the characteristic relaxation time
of the molecular con�guration �r is small as compared to both the characteristic times
�1 and �2:

�r.�1 and �r.�2 : (14)

(b) In the absence of the 
ow, the initial deviation of the distribution function from
the equilibrium is small so that the linear approximation is valid.
While assumption (b) is merely of a technical nature, and it is intended to simplify

the treatment of the dissipative part of the Fokker–Planck operator (10) for elastic
forces of a complicated form, assumption (a) is crucial for taking into account the

ow in an adequate way. We have assumed that the two parameters characterizing the
composed system ‘relaxing polymer con�guration + 
owing solvent’ should be small:
These two parameters are

�1 = �r=�1; �2 = �r=�2 : (15)
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The characteristic relaxation time of the polymeric con�guration is de�ned via the
coe�cient � r: �r = c� r , where c is some positive dimensionless constant which is
estimated by the absolute value of the lowest nonzero eigenvalue of the operator Jd.
The �rst parameter �1 is usually termed the Weissenberg number while the second one
�2 is the Deborah number (cf. Ref. [14], Sections 7–2).

3. The method of invariant manifold for weakly driven systems

3.1. The Newton iteration scheme

In this section we introduce an extension of the method of invariant manifold [7]
onto systems coupled with external �elds. We consider a class of dynamic systems of
the form

d	
dt
= Jd	 + Jex(�)	 ; (16)

where Jd is a linear operator representing the dissipative part of the dynamic vector
�eld, while Jex(�) is a linear operator which represents an external 
ux and depends
on a set of external �elds �= {�1; : : : ; �k}. Parameters � are either known functions of
the time, �= �(t), or they obey a set of equations,

d�
dt
= �(	; �) : (17)

Without any restriction, parameters � are adjusted in such a way that Jex(� = 0) ≡ 0.
Kinetic equation (2) has the form (16), and general results of this section will be
applied to the dumbbell models below in a straightforward way.
We assume that the vector �eld Jd	 has the same dissipative properties as the

Fokker–Planck operator (10). Namely, there exists the globally convex entropy function
S which obeys: DS[Jd	]¿0, and the operator Jd is symmetric and nonpositive in
the scalar product 〈•; •〉s de�ned by the second di�erential of the entropy: 〈g; h〉s =
−D2S[g; h]. Thus, the vector �eld Jd	 drives the system irreversibly to the unique
equilibrium state 	eq.
We consider a set of n real-valued functionals, M∗

i [	] (macroscopic variables), in
the phase space F of system (16). A macroscopic description is obtained once we
have derived a closed set of equations for the variables M∗

i .
Our approach is based on constructing a relevant invariant manifold in phase space

F. This manifold is thought as a �nite-parametric set of solutions 	(M) to Eq. (16)
which depends on time implicitly via the n variables Mi[	]. The latter may di�er from
the macroscopic variables M∗

i . For systems with external 
uxes (16), we assume that
the invariant manifold depends also on the parameters �, and on their time derivatives
taken to arbitrary order: 	(M;A), where A = {�; �(1); : : :} is the set of time deriva-
tives �(k) = d�k=dtk . It is convenient to consider time derivatives of � as independent
parameters. This assumption is important because then we do not need an explicit form
of Eq. (17) in the course of construction of the invariant manifold.
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By a de�nition, the dynamic invariance postulates the equality of the “macroscopic”
and the “microscopic” time derivatives:

J	(M;A) =
n∑

i=1

@	(M;A)
@Mi

dMi

dt
+

∞∑
n=0

k∑
j=1

@	(M;A)

@�(n)j

�(n+1)j ; (18)

where J = Jd + Jex(�). The time derivatives of the macroscopic variables, dMi=dt, are
calculated as follows:

dMi

dt
= DMi[J	(M;A)] ; (19)

where DMi stands for di�erentials of the functionals Mi.
Let us introduce the projector operator associated with the parameterization of the

manifold 	(M;A) by the values of the functionals Mi[	]:

PM =
n∑

i=1

@	(M;A)
@Mi

DMi[ • ] : (20)

It projects vector �elds from the phase space F onto tangent bundle T	(M;A) of the
manifold 	(M;A). Then Eq. (18) is rewritten as the invariance equation:

(1− PM )J	(M;A) =
∞∑
n=0

k∑
j=1

@	

@�(n)j

�(i+1) ; (21)

which has the invariant manifolds as its solutions.
Furthermore, we assume the following: (i) The external 
ux Jex(�)	 is small in

comparison to the dissipative part Jd	, i.e. with respect to some norm we require:
|Jex(�)	|.|Jd	|. This allows us to introduce a small parameter �1, and to replace the
operator Jex with �1Jex in the Eq. (16). Parameter �1 is proportional to the characteristic
value of the external variables �. (ii) The characteristic time �� of the variation of the
external �elds � is large in comparison to the characteristic relaxation time �r , and the
second small parameter is �2 = �r=��. 1. The parameter �2 does not enter the vector
�eld J explicitly but it shows up in the invariance equation. Indeed, with a substitution,
�(i) → �i2�

(i), the invariance equation (18) is rewritten in a form which incorporates
both the parameters �1 and �2:

(1− PM ){Jd + �1Jex}	 = �2
∑

i

k∑
j=1

@	

@�(i)j
�(i+1)j : (22)

We develop a modi�ed Newton scheme for solution of this equation. Let us assume
that we have some initial approximation to desired manifold 	(0). We seek the cor-
rection of the form 	(1) = 	(0) + 	1. Substituting this expression into Eq. (22), we
derive

(1− P(0)M ){Jd + �1Jex}	1 − �2
∑

i

k∑
j=1

@	1

@�(i)j
�(i+1)j

=−(1− P(0)M )J	(0) + �2
∑

i

k∑
j=1

@	(0)

@�(i)j
�(i+1)j : (23)
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Here P(0)M is a projector onto tangent bundle of the manifold 	(0). Further, we neglect
two terms on the left-hand side of this equation, which are multiplied by parameters
�1 and �2, regarding them small in comparison to the �rst term. In the result we arrive
at the equation

(1− P(0)M )Jd	1 =−(1− P(0)M )J	(0) + �2
∑

i

k∑
j=1

@	(0)

@�(i)j
�(i+1)j : (24)

For (n+ 1)th iteration we obtain

(1− P(n)M )Jd	n+1 =−(1− P(0)M )J	(n) + �2
∑

i

k∑
j=1

@	(n)

@�(i)j
�(i+1)j ; (25)

where 	(n) =
∑n

i=0	i is the approximation of nth order and P(n)M is the projector onto
its tangent bundle.
It should be noted that deriving equations (24) and (25) we have not varied the

projector PM with respect to yet unknown term 	n+1, i.e., we have kept PM = P(n)M

and have neglected the contribution from the term 	n+1. The motivation for this action
comes from the original paper [7], where it was shown that such modi�cation generates
iteration schemes properly converging to slow invariant manifold.
In order to gain the solvability of Eq. (25) an additional condition is required:

P(n)M 	n+1 = 0 : (26)

This condition is su�cient to provide the existence of the solution to linear system
(25), while the additional restriction onto the choice of the projector is required in
order to guarantee the uniqueness of the solution. This condition is

ker[(1− P(n)M )Jd] ∩ ker P(n)M = 0 : (27)

Here ker denotes a null space of the corresponding operator. How this condition can
be met is discussed in the next subsection.
It is natural to begin the iteration procedure (25) starting from the invariant manifold

of the nondriven system. In other words, we choose the initial approximation 	(0) as
the solution of the invariance equation (22) corresponding to �1 = 0 and �2 = 0:

(1− P(0)M )Jd	(0) = 0 : (28)

We shall return to the question how to construct solutions to this equation in
Section 3.3.
The above recurrent equations (25), (26) are simpli�ed Newton method for the solu-

tion of invariance equation (22), which involves the small parameters. A similar proce-
dure for Grad equations of the Boltzmann kinetic theory was used recently in Ref. [15].
When these parameters are not small, one should proceed directly with Eq. (23).
Above, we have focused our attention on how to organize the iterations to construct

invariant manifolds of weakly driven systems. The only question we have not yet
answered is how to choose projectors in iterative equations in a consistent way. In the
next subsection we discuss the problem of derivation of the reduced dynamics and its
relation to the problem of the choice of projector.
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3.2. Projector and reduced dynamics

Below we suggest the projector which is equally applicable for constructing invariant
manifolds by the iteration method (25), (26) and for generating macroscopic equations
based on given manifold.
Let us discuss the problem of constructing closed equations for macroparameters.

Having some approximation to the invariant manifold, we nevertheless deal with a
noninvariant manifold and we face the problem how to construct the dynamics on it.
If the n-dimensional manifold 	̃ is found the macroscopic dynamics is induced by any
projector P onto the tangent bundle of 	̃ as follows [7]:

dM∗
i

dt
= DM∗

i |	̃[PJ	̃] : (29)

To specify the projector we involve the two above-mentioned principles: dissipativity
and slowness. The dissipativity is required to have the unique and stable equilibrium
solution for macroscopic equations, when the external �elds are absent (� = 0). The
slowness condition requires the induced vector �eld PJ	 to match the slow modes of
the original vector �eld J	.
Let us consider the parameterization of the manifold 	̃(M) by the parameters Mi[	].

This parameterization generates associated projector P = PM by Eq. (20). This leads
us to look for the admissible parameterization of this manifold, where by admissibility
we understand the concordance with the dissipativity and the slowness requirements.
We solve the problem of the admissible parameterization in the following way. Let us
de�ne the functionals Mi; i = 1; : : : ; n by the set of the lowest eigenvectors ’i of the
operator Jd:

Mi[	̃] = 〈’i; 	̃〉s ;
where Jd’i= �i’i. The lowest eigenvectors ’1; : : : ; ’n are taken as a join of basises in
the eigenspaces of the eigenvalues with smallest absolute values: 0¡ |�1|6|�2|6 · · ·6
|�n|. For simplicity, we shall work with the orthonormal set of eigenvectors: 〈’i; ’j〉s=
�ij with �ij the Kronecker symbol. Since the function 	eq is the eigenvector of the
zero eigenvalue we have: Mi[	eq] = 〈’i;	eq〉s = 0.
Then the associated projector PM , written as

PM =
n∑

i=1

@	̃
@Mi

〈’i; •〉s ; (30)

will generate the equations in terms of the parameters Mi as follows: dMi=dt =
〈’iPMJ	̃〉s = 〈’iJ 	̃〉s. Their explicit form is

dMi

dt
= �iMi + 〈J+ex(�)gi; 	̃(M)〉s ; (31)

where the J+ex is the adjoint to operator Jex with respect to the scalar product 〈•; •〉s.
Apparently, in the absence of forcing (� ≡ 0) the macroscopic equations dMi=dt =

�iMi are thermodynamically stable. They represent the dynamics of slowest eigenmodes
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of equations d	=dt=Jd	. Thus, projector (30) complies with the above stated require-
ments of dissipativity and slowness in the absence external 
ux.
To rewrite the macroscopic equations (31) in terms of the required set of macropa-

rameters, M∗
i [	]= 〈m∗

i ; 	〉s, we use formula (29) which is equivalent to the change of
variables {M}→{M∗(M)}, M∗

i = 〈m∗
i ; 	̃(M)〉s in Eq. (31). Indeed, this is seen from

the relation

DM∗
i |	̃[PMJ	̃] =

∑
j

@M∗
i

@Mj
DMj|	̃[J 	̃] :

We have constructed the dynamics with the help of the projector PM associated with
the lowest eigenvectors of the operator Jd. It is directly veri�ed that such projector (30)
ful�lls condition (26) for arbitrary manifold 	(n)=	̃. For this reason it is natural to use
projector (30) for both procedures, constructing the invariant manifold, and deriving
the macroscopic equations.
We have to note that the above-described approach to de�ning the dynamics via

the projector is di�erent from the concept of “thermodynamic parameterization” pro-
posed in the Refs. [7,16]. The latter was applicable for arbitrary dissipative systems
including nonlinear ones, whereas the present derivations are applied solely for linear
systems.

3.3. Linear zero-order equations

In this section we focus our attention on the solution of the zero-order invariance
equation (28). We seek the linear invariant manifold of the form

	(0)(a) =	eq +
n∑

i=1

aimi ; (32)

where ai are coordinates on this manifold. This manifold can be considered as an
expansion of the relevant slow manifold near the equilibrium state. This limits the
domain of validity of manifolds (32) because they are not generally positively de�nite.
This remark indicates that nonlinear invariant manifolds should be considered for large
deviations from the equilibrium but this goes beyond the scope of this paper.
The linear n-dimensional manifold representing the slow motion for the linear dissi-

pative system (16) is associated with n slowest eigenmodes. This manifold should be
built up as the linear hull of the eigenvectors ’i of the operator Jd, corresponding to
the lower part of its spectrum. Thus we choose mi = ’i.
Dynamic equations for the macroscopic variables M∗ are derived in two steps. First,

following Section 3.2, we parameterize the linear manifold 	(0) with the values of the
moments Mi[	] = 〈’i;	〉s. We obtain that the parameterization of manifold (32) is
given by ai =Mi, or

	(0)(M) =	eq +
n∑

i=1

Mi’i :
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Then the reduced dynamics in terms of variables Mi reads

dMi

dt
= �iMi +

∑
j

〈J+ex’i; ’j〉sMj + 〈J+ex’i;	eq〉s ; (33)

where �i = 〈’i; Jd’i〉s are eigenvalues which correspond to eigenfunctions ’i.
Second, we switch from the variables Mi to the variables M∗

i (M) = 〈m∗
i ; 	(0)(M)〉s

in Eq. (33). Resulting equations for the variables M∗ are also linear:
dM∗

i

dt
=
∑
jkl

(B−1)ij�jkBkl�M∗
l +

∑
jk

(B−1)ij〈J+ex’j; ’k〉s�M∗
k

+
∑
j

(B−1)ij〈J+ex’j;	eq〉s : (34)

Here �M∗
i =M∗

i −M∗
eq|i is the deviation of the variable M∗

i from its equilibrium value
M∗
eq|i, and Bij = 〈m∗

i ; ’j〉 and �ij = �i�ij.

4. Constitutive equations

4.1. Iteration scheme

In this section we apply the above developed formalism to the elastic dumbbell
model (2). External �eld variables � are the components of the tensor k̂.
Since we aim at constructing a closed description for the stress tensor � (3) with

the six independent components, the relevant manifold in our problem should be six
dimensional. Moreover, we allow a dependence of the manifold on the material deriva-

tives of the tensor k̂ : k̂
(i)
= Dik=Dti. Let 	∗(M;K)K = {k̂;k̂(1); : : :} be the desired

manifold parameterized by the six variables Mi i = 1; : : : ; 6 and the independent com-

ponents (maximum eight for each k̂
(l)
) of the tensors k̂

(l)
. Small parameters �1 and �2,

introduced in Section 3, are established by Eq. (15). Then we de�ne the invariance
equation

(1− PM )(Jd + �1Jh)	 = �2
∞∑
i=0

∑
lm

@	

@k̂
(i)
lm

k̂
(i+1)
lm ; (35)

where PM = @	=@MiDMi[ • ] is the projector associated with chosen parameterization
and summation indexes l; m run only eight independent components of tensor k̂.
Following the further procedure we straightforwardly obtain the recurrent equations:

(1− P(n)M )Jd	n+1 =−(1− P(n)M )[Jd + �1Jh]	(n)

+�2
∑

i

∑
lm

@	(n)

@k̂
(i)
lm

k̂
(i+1)
lm ; (36)

P(n)M 	n+1 = 0 ; (37)

where 	n+1 is the correction to the manifold 	(n) =
∑n

i=0	i.
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The zero-order manifold is found as the relevant solution to equation:

(1− P(0)M )Jd	(0) = 0 : (38)

We construct zero-order manifold 	(0) in Section 4.3.

4.2. The dynamics in general form

Let us assume that some approximation to invariant manifold 	̃(a;K) is found (here
a= {a1; : : : ; a6} are some coordinates on this manifold). The next step is constructing
the macroscopic dynamic equations.
In order to comply with dissipativity and slowness by means of the recipe from

the previous section we need to �nd six lowest eigenvectors of the operator Jd. We
shall always assume in a sequel that the hydrodynamic interaction parameter � is small
enough that the dissipativity of Jd (12) is not violated.
Let us consider two classes of functions: C1 = {w0(Q2)} and C2 = {w1(Q2) �QQ},

where w0;1 are functions of Q2 and the notation ◦ indicates traceless parts of tensor
or matrix, e.g. for the dyad QQ: ( �QQ)ij = QiQj − 1

3�ijQ2. Since the sets C1 and C2
are invariant with respect to operator Jd, i.e., JdC1⊂C1 and JdC2⊂C2, and densities
FQ=f �QQ+ (13)1fQ2 of the moments comprising the stress tensor �p (4) belong to
the space C1 + C2, we shall seek the desired eigenvectors in the classes C1 and C2.
Namely, we intend to �nd one lowest isotropic eigenvector 	eqm0(Q2) of eigenvalue
−�0 (�0¿ 0) and �ve nonisotropic eigenvectors mij = 	eqm1(Q2)( �QQ)ij of another
eigenvalue −�1 (�1¿ 0). The method of derivation and analytic evaluation of these
eigenvalues are discussed in Appendix A. For a while we assume that these eigenvectors
are known.
In the next step we parameterize given manifold 	̃ by the values of the functionals:

M0 = 〈	eqm0; 	̃〉s =
∫

m0	̃ dQ ;

�M= 〈	eqm1 �QQ; 	̃〉s =
∫

m1 �QQ	̃ dQ : (39)

Once a desired parameterization 	̃(M0; �M;K) is obtained, the dynamic equations are
found as

DM0

Dt̂
+ �0M0 = 〈(ˆ̇
 : �QQ)m′

0〉 ;

�M[1] + �1 �M=− 1
31 ˆ̇
 : �M− 1

3
ˆ̇
〈m1Q2〉+ 〈 �QQ (ˆ̇
 : �QQ)m′

1〉 ; (40)

where all averages are calculated with the d.f. 	̃, i.e., 〈•〉=∫ •	̃ dQ, m′
0;1=@m0;1(Q2)=

@(Q2) and subscript [1] represents the upper convective derivative of tensor:

�[1] =
D�
Dt̂

− {k̂ · �+ � · k̂†} :
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The parameters �0;1, which are absolute values of eigenvalues of operator Jd, are
calculated by formulas (for de�nition of operators G1 and G2 see Appendix A):

�0 =−〈m0G0m0〉e
〈m0m0〉e ¿ 0 ; (41)

�1 =−〈Q4m1G1m1〉e
〈m1m1Q4〉e ¿ 0 ; (42)

where we have introduced the notation of the equilibrium average:

〈y〉e =
∫

	eqy dQ : (43)

Equations on components of the polymeric stress tensor �p (4) are constructed as a
change of variables {M0; �M} → �p. The use of the projector P̃ makes this operation
straightforward:

D�p
Dt̂

=−nkBT
∫
FQP̃J 	̃(M0(�p;K); �M(�p;K);K) dQ : (44)

Here, the projector P̃ is associated with the parameterization by the variables M0 and
�M:

P̃ =
@	̃
@M0

〈	eqm0; •〉s +
∑
kl

@	̃
@ �Mkl

〈	eqm1( �QQ)kl; •〉s : (45)

We note that sometimes it is easier to make transition to the variables �p after
solving Eq. (40) rather than to construct explicitly and solve equations in terms of �p.
It allows to avoid reverting the functions �p(M0; �M) and to deal with generally more
simple equations.

4.3. Zero-order constitutive equation

In this subsection we derive the closure based on the zero-order manifold 	(0) found
as appropriate solution to Eq. (38). Following the approach described in Section 3.3
we construct such a solution as the linear expansion near the equilibrium state 	eq

(32). After parameterization by the values of the variables M0 and �M associated with
the eigenvectors 	eqm0 and 	eqm1 �QQ we �nd

	(0) =	eq

(
1 +M0

m0
〈m0m0〉e +

15
2
�M : �QQ

m1
〈m1m1Q4〉e

)
: (46)

Then with the help of projector (45):

P(0)M =	eq

{
m0

〈m0m0〉e 〈m0; •〉e +
15
2

m1
〈m1m1Q 4〉e

�QQ : 〈m1 �QQ; •〉
}

(47)

by formula (44) we obtain

D tr �p
Dt̂

+ �0tr �p = a0(��p : ˆ̇
 ) ;
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��p[1] + �0 ��p = b0[��p · ˆ̇
+ ˆ̇
 · ��p]− 1
31(��p : ˆ̇
) + (b1tr �p − b2nkBT ) ˆ̇
 ; (48)

where the constants bi, a0 are

a0 =
〈fm0Q2〉e〈m0m1Q4m′

1〉e
〈fm0Q4〉e〈m20〉e

;

b0 =
2
7
〈m1m′

2Q
6〉e

〈m21Q4〉e
;

b1 =
1
15

〈fm1Q4〉e
〈fm0Q2〉e

{
2
〈m0m′

2Q
4〉e

〈m21Q4〉e
+ 5

〈m0m1Q2〉e
〈m1m1Q4〉e

}
;

b2 =
1
15

〈fm1Q4〉e
〈m1m1Q4〉e {2〈m

′
2Q

4〉e + 5〈m1Q2〉e} : (49)

We remind that m′
0;1 = @m0;1=@(Q2). These formulas were obtained by the use of the

formulas from Appendix B.
It is remarkable that being rewritten in terms of the full stresses � =−�s
̇ + �p the

dynamic system (48) takes a form:

� + c1�[1] + c3{
̇ · � + � · 
̇}+ c5(tr �)
̇+ 1(c6� : 
̇+ c8tr �)

= − �{
̇+ c2
̇[1] + c4
̇ · 
̇+ c7(
̇ : 
̇)1} ; (50)

where the constants �, ci are given by the following relationships:

�= � r�s�; � = 1 + nkBT�1b2=�s ;

c1 = � r=�1; c2 = � r=(��1) ;

c3 =−b0� r=�0; c4 =−2b0� r=(��1) ;
c5 =

� r
3�1

(2b0 − 3b1 − 1); c6 =
� r
�1
(2b0 + 1− a0) ;

c7 =
� r
�1�

(2b0 + 1− a0); c8 = 1
3 (�0=�1 − 1) : (51)

In the last two formulas we returned to the original dimensional quantities: time t and
gradient of velocity tensor k=∇v, and at the same time we kept the old notations for
the dimensional convective derivative �[1] = D�=Dt − k · �− � · k†.
If the constant c8 were equal to zero, then the form of Eq. (50) would be recognized

as the Oldroyd 8 constant model [17], proposed by Oldroyd about 40 years ago on a
phenomenological basis. Nonzero c8 indicates a presence of di�erence between � r=�0
and � r=�1 which are relaxation times of trace tr � and traceless components �� of the
stress tensor �.

4.4. Corrections

In this subsection we discuss the properties of corrections to the zero-order model
(50). Let P(0)M (46) be the projector onto the zero-order manifold 	(0) (46). The
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invariance equation (36) for the �rst-order correction 	(1) =	(0) +	1 takes a form

L	1 =−(1− P(0)M )(Jd + Jh)	(0) ;

P(0)M 	1 = 0 ; (52)

where L = (1 − P(0)M )Jd(1 − P(0)M ) is the symmetric operator. If the manifold 	(0) is
parameterized by the functionals M0 =

∫
g0	(0) dQ and �M =

∫
m1 �QQ	(0) dQ, where

	eqm0 and 	eq �QQm1 are lowest eigenvectors of Jd, then the general form of the
solution is given by

	1 =	eq{z0M0(
̇ : �QQ) + z1( �M : �QQ)(
̇ : �QQ)

+ z2{
̇ · �M+ �M · 
̇} : �QQ+ z3
̇ : �M+ 1
2 
̇ : �QQ} : (53)

The terms z0 through z3 are the functions of Q2 found as the solutions to some linear
di�erential equations.
We observe two features of the new manifold: �rst, it remains linear in variables

M0 and �M and second it contains the dependence on the rate of strain tensor 
̇. As
the consequence, the transition to variables � is given by the linear relations:

− ��p
nkBT

= r0 �M+ r1M0
̇+ r2{
◦


̇ · �M+ �M · 
̇}+ r3
◦

̇ · 
̇ ;

− tr �p
nkBT

=p0M0 + p1
̇ : �M ; (54)

where ri and pi are some constants. Finally, the equations in terms of � should be
also linear. Analysis shows that the �rst-order correction to the modi�ed Oldroyd 8
constants model (50) will be transformed into the equations of the following general
structure:

� + c1�[1] + {�1 · � · �2 + �†
2 · � · �†

1}+ �3(tr �) + �4(�5 : �) =−�0�6 ; (55)

where �1 through �6 are tensors dependent on the rate-of-strain tensor 
̇ and its �rst
convective derivative 
̇[1], constant c1 is the same as in Eq. (51) and �0 is a positive
constant.
Because the explicit form of the tensors �i is quite extensive we do not present

them in this paper. Instead, we give several general remarks about the structure of the
�rst- and higher-order corrections:
(1) Since manifold (53) does not depend on the vorticity tensor !=k−k† the latter

enters Eq. (55) only via convective derivatives of � and 
̇. This is su�cient to acquire
the frame indi�erence feature, since all the tensorial quantities in dynamic equations
are indi�erent in any time dependent reference frame [14].
(2) When k = 0 the �rst-order equations (55) as well as equations for any order

reduce to linear relaxation dynamics of slow modes:

D��
Dt
+

�1
� r
�� = 0 ;
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Dtr �
Dt

+
�0
� r
tr � = 0 ;

which is obviously concordant with the dissipativity and the slowness requirements.
(3) In all higher-order corrections one will be always left with linear manifolds if the

projector associated with functionals M0[	] and �M[	] is used in every step. It follows
that the resulting constitutive equations will always take a linear form (55), where all
tensors �i depend on higher order convective derivatives of 
̇ (the highest possible
order is limited by the order of the correction). Similarly to the �rst and zero orders
the frame indi�erence is guaranteed if the manifold does not depend on the vorticity
tensor unless the latter is incorporated in any frame invariant time derivatives. It is
reasonable to eliminate the dependence on vorticity (if any) at the stage of constructing
the solution to iteration equations (36).
(4) When the force F is linear F = Q our approach is proven to be also correct

since it leads the Oldroyd-B model (Eq. (50) with ci=0 for i=3; : : : ; 8). This follows
from the fact that the spectrum of the corresponding operator Jd is more degenerated,
in particular �0 = �1 = 1 and the corresponding lowest eigenvectors comprise a simple
dyad 	eqQQ.

5. Tests on the fene dumbbell model

In this section we specify the choice of the force law as the FENE springs (7) and
present results of test calculations for the revised Oldroyd 8 constants (48) equations
on the examples of two simple viscometric 
ows.
We introduce the extensibility parameter of FENE dumbbell model b:

b=Q20 =
HQ20
kBT

: (56)

It was estimated [1] that b is proportional to the length of polymeric molecule and has
a meaningful variation interval 50–1000. The limit b → ∞ corresponds to the Hookean
case and therefore to the Oldroyd-B constitutive relation.
In our test calculations we will compare our results with the Brownian dynamic (BD)

simulation data made on FENE dumbbell equations [18], and also with one popular
approximation to the FENE model known as FENE-P (FENE-Peterelin) model [1,19].
The latter is obtained by selfconsistent approximation to FENE force

F=
1

1− 〈Q2〉=bQ : (57)

This force law like Hookean case allows for the exact moment closure leading to
nonlinear constitutive equations [1,19]. Speci�cally, we will use the modi�ed variant
of FENE-P model, which matches the dynamics of original FENE in near equilib-
rium region better than the classical variant. This modi�cation is achieved by a slight
modi�cation of Kramers de�nition of the stress tensor:

�p = nkBT (1− �b)1− 〈FQ〉 : (58)
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Table 1
Values of constants to the revised Oldroyd 8 constants model computed on
the base of the FENE dumbbells model

b �0 �1 b0 b1 b2 a0

20 1.498 1.329 −0:0742 0.221 1.019 0.927
50 1.198 1.135 −0:0326 0.279 1.024 0.982
100 1.099 1.068 −0:0179 0.303 1.015 0.990
200 1.050 1.035 0.000053 0.328 1.0097 1.014
∞ 1 1 0 1=3 1 1

Table 2
Corrections due to hydrodynamic interaction to the constants of the revised Ol-
droyd 8 constants model based on FENE force

b ��0 ��1 �b0 �b1 �b2 �a0

20 −0:076 −0:101 0.257 −0:080 −0:0487 −0:0664
50 −0:0618 −0:109 −0:365 0.0885 −0:0205 −0:0691
100 −0:0574 −0:111 −1:020 0.109 −0:020 −0:0603

The case �=0 gives the classical de�nition of FENE-P, while more thorough estimation
[19,3] is �= (b(b+ 2))−1.

5.1. Constants

The speci�c feature of the FENE model is that the length of dumbbells Q can vary
only in a bounded domain of R3, namely inside a sphere Sb={Q26b}. The sphere Sb

de�nes the domain of integration for averages 〈•〉e=
∫
Sb
	eq• dQ, where the equilibrium

distribution reads 	eq = c−1(1− Q2=b)b=2, c =
∫
Sb
(1− Q2=b)b=2 dQ.

In order to �nd constants for the zero-order model (48) we do the following: First, we
analytically compute the lowest eigenfunctions of operator Jd: g1(Q2) �QQ and g0(Q2)
without account of the hydrodynamic interaction (� = 0). The functions g0 and g1
are computed by a procedure presented in Appendix A with the help of the symbolic
manipulation software Maple V.3 [20]. Then we calculate the perturbations terms h0;1
by formulas (A6) introducing the account of hydrodynamic interaction. Table 1 presents
the constants �0;1, ai, bi (42) (49) of the zero-order model (48) without inclusion of
hydrodynamic interaction � = 0 for several values of extensibility parameter b. The
relative error �0;1 (see Appendix A) of approximation for these calculations did not
exceed the value 0:02. Table 2 shows the linear correction terms for constants from
Table 1 which account a hydrodynamic interaction e�ect: �h0;1 = �0;1(1 + �(��0;1)),
ahi = ai(1 + �(�ai)), bhi = bi(1 + �(�bi)). The latter are calculated by substituting the
perturbed functions m0;1 = g0;1 + �h0;1 into (42) and (49), and expanding them up to
�rst order in �. One can observe, since �¿ 0, the e�ect of hydrodynamic interaction
results in the reduction of the relaxation times.
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5.2. Dynamic problems

The rest of this section concerns the computations for two particular 
ows. The shear

ow is de�ned by

k(t) = 
̇(t)


 0 1 00 0 0
0 0 0


 ; (59)

where 
̇(t) is the shear rate, and the elongation 
ow corresponds to the choice:

k(t) = �̇(t)


 1 0 0
0 −1=2 0
0 0 −1=2


 ; (60)

where �̇(t) is the elongation rate.
In test computations we will look at the so-called viscometric material functions

de�ned through the components of the polymeric part of the stress tensor �p. Namely,
for shear 
ow they are the shear viscosity �, the �rst and the second normal stress
coe�cients  1,  2, and for elongation 
ow the only function is the elongation viscosity
��. In dimensionless form they are written as

�̂=
�− �s
nkBT� r

=− �p;12
�
nkBT

; (61)

 ̂ 1 =
 1

nkBT�2r
=
�p;22 − �p;11
�
2nkBT

; (62)

 ̂ 2 =
 2

nkBT�2r
=
�p;33 − �p;22

�
2nkBT
; (63)

#=
��− 3�s
nkBT� r

=
�p;22 − �p;11
��nkBT

; (64)

where �
= 
̇� r and ��= �̇� r are dimensionless shear and elongation rates. Characteristic
values of latter parameters �
 and �� allow to estimate the parameter �1 (15). For all

ows considered below the second 
ow parameter (Deborah number) �2 is equal to
zero.
Let us consider the steady-state values of viscometric functions in steady shear and

elongation 
ows: 
̇ = const; �̇ = const. For the shear 
ow the steady values of these
functions are found from Eqs. (48) as follows:

�̂= b2=(�1 − c �
2);  ̂ 1 = 2�̂=�1;  ̂ 2 = 2b0�̂=�1 ;

where c= 2
3(2b

2
0 + 2b0 − 1)=�1 + 2b1a0=�0. Estimations for the constants (see Table 1)

shows that c60 for all values of b (case c = 0 corresponds to b=∞), thus all three
functions are monotonically decreasing in absolute value with increase of quantity �
,
besides the case when b =∞. Although they qualitatively correctly predict the shear
thinning for large shear rates due to power law, but the exponent −2 of power depen-
dence in the limit of large �
 from the values −0:66 for parameter �̂ and −1:33 for  ̂ 1



172 V.B. Zmievski et al. / Physica A 275 (2000) 152–177

Fig. 1. Dimensionless shear viscosity and �rst normal stress coe�cient vs. shear rate: ( ) revised Oldroyd
8 constants model; (· · · · · ·) FENE-P model; (◦◦◦) BD simulations on the FENE model; (−·−·−) Hookean
dumbbell model.

observed in Brownian dynamic simulations [18]. It is explained by the fact that slopes
of shear thinning lie out of the applicability domain of our model.
The predictions for the second normal stress coe�cient indicate one more di�erence

between revised Oldroyd 8 constant equation and FENE-P model (see Fig. 1). FENE-P
model shows identically zero values for  ̂ 2 in any shear 
ow, either steady or time
dependent, while model (48), as well as BD simulations (see Fig. 9 in Ref. [18])
predict small, but nonvanishing values for this quantity. Namely, due to model (48)
in shear 
ows the following relation  ̂ 2 = b0 ̂ 1 is always valid, with proportionality
coe�cient b0 small and mostly negative, what leads to small and mostly negative
values of  ̂ 2.
In the elongation 
ow the steady state value to # is found as

#=
3b2

�1 − (5=6)(2b0 + 1) ��− 7b1a0 ��2=�0
: (65)

The denominator has one root on positive semi-axis

��∗ =−5�0(2b0 + 1)
84b1a0

+

((
5�0(2b0 + 1)
84b1a0

)2
+

�1�0
7b1a0

)1=2
; (66)

which de�nes a singularity point for the dependence #( ��). The BD simulation ex-
periments [18] on the FENE dumbbell models shows that there is no divergence of
elongation viscosity for all values of elongation rate (see Fig. 2). For Hookean springs
��∗= 1

2 while in our model (48) the singularity point shifts to higher values with respect
to decreasing values of b as it is demonstrated in Table 3.
Fig. 3 gives an example of dynamic behavior for elongation viscosity in the instant

start-up of the elongational 
ow. Namely, it shows the evolution of initially vanishing
polymeric stresses after instant jump of elongation rate at the time moment t=0 from
the value ��= 0 to the value ��= 0:3.
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Fig. 2. Dimensionless elongation viscosity vs. elongation rate: ( ) revised Oldroyd 8 constants model,
(· · · · · ·) FENE-P model, (◦◦◦) BD simulations on the FENE model; (−·−·−) Hookean dumbbell model.

Table 3
Singular values of elongation rate

b 20 50 100 120 200 ∞
��∗ 0.864 0.632 0.566 0.555 0.520 0.5

Fig. 3. Time evolution of elongation viscosity after inception of the elongation 
ow with elongation rate
�� = 0:3: ( ) revised Oldroyd 8 constants model, (· · · · · ·) FENE-P model, (− − −) BD simulations on
FENE model; (− · − · −) Hookean dumbbell model.

It is possible to conclude that the revised Oldroyd 8 constants model (48) with esti-
mations given by (49) for small and moderate rates of strain up to �1=� r|
̇|=(2�1) ∼ 0:5
yields a good approximation to original FENE dynamics. The quality of the approxima-
tion in this interval is the same or better than the one of the nonlinear FENE-P model.

6. Conclusion

The main results of this paper are as follows:
(i) We have developed a systematic method of constructing constitutive equations

from the kinetic dumbbell models for the polymeric solutions. The method is free from
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a priori assumptions about the form of the spring force and is consistent with basic
physical requirements: frame invariance and dissipativity of internal motions of 
uid.
The method extends the so-called method of invariant manifold onto equations coupled
with external �elds. Two characteristic parameters of 
uid 
ow were distinguished in
order to account for the e�ect of the presence of external �elds. The iterative Newton
scheme for obtaining a slow invariant manifold of the system driven by the 
ow with
relatively low values of both characteristic parameters was developed.
(ii) We demonstrated that the revised phenomenological Oldroyd 8 constants con-

stitutive equations represent the slow dynamics of microscopic elastic dumbbell model
with any nonlinear spring force in the limit when the rate of strain and frequency of
time variation of the 
ow are su�ciently small and microscopic states at initial time
of evolution are taken not far from the equilibrium.
(iii) The corrections to the zero-order manifold lead generally to linear in stresses

equations but with highly nonlinear dependence on the rate of strain tensor and its
convective derivatives.
(iv) The zero-order constitutive equation is compared to the direct Brownian dynam-

ics simulation for FENE dumbbell model as well as to predictions of FENE-P model.
This comparison shows that the zero-order constitutive equation gives the correct pre-
dictions in the domain of its validity, but does not exclude qualitative discrepancy
occurring out of this domain, particularly in elongation 
ows.
This discrepancy calls for a further development, in particular, the use of nonlinear

manifolds for derivation of zero-order model. The reason is in the necessity to provide
concordance with the requirement of the positivity of distribution function. It may lead
to nonlinear constitutive equation on any order of correction. These issues are currently
under consideration and results will be reported separately.
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Appendix A. Approximations to eigenfunctions of the Fokker–Planck operator Jd

In this appendix we discuss the question how to �nd the lowest eigenvectors
	eqm0(Q2) and 	eqm1(Q2) �QQ of the operator Jd (10) in the classes of functions
having a form: w0(Q) and w1(Q) �QQ. The results presented in this appendix were
used in the Sections 4 and 5. It is directly veri�ed that

Jd	eqm0 =	eqG h
0m0 ;

Jd	eqm1 �QQ=	eq(G h
1m1) �QQ ;
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where the operators Gh0 and Gh1 are given by

Gh0 = G0 − �H0; Gh1 = G1 − �H1 : (A.1)

The operators G0;1 and H0;1 act in the space of isotropic functions (i.e., dependent only
on Q = (Q ·Q)1=2) as follows:

G0 =
1
2

(
@2

@Q2
− fQ

@
@Q

+
2
Q

@
@Q

)
; (A.2)

G1 =
1
2

(
@2

@Q2
− fQ

@
@Q

+
6
Q

@
@Q

− 2f
)

; (A.3)

H0 =
2
Q

(
@2

@Q2
− fQ

@
@Q

+
2
Q

@
@Q

)
; (A.4)

H1 =
2
Q

(
@2

@Q2
− fQ

@
@Q

+
5
Q

@
@Q

− 2f + 1
Q2

)
: (A.5)

The following two properties of the operators Gh0;1 are important for our analysis:
Let us de�ne two scalar products 〈•; •〉0 and 〈•; •〉1:

〈y; x〉0 = 〈xy〉e; 〈y; x〉1 = 〈xyQ4〉e :

Here 〈•〉e is the equilibrium average as de�ned in (43). Then we state that for su�-
ciently small � the operators Gh0 and Gh1 are symmetric and nonpositive in the scalar
products 〈•; •〉0 and 〈•; •〉1, respectively. Thus for obtaining the desired eigenvectors
of the operator Jd we need to �nd the eigenfunctions m0 and m1 related to the lowest
nonzero eigenvalues of the operators Gh0;1.
Since we regard the parameter � small it is convenient, �rst, to �nd lowest eigen-

functions g0;1 of the operators G0;1 and, then, to use standard perturbation technique
in order to obtain m0;1. For the perturbation of the �rst order one �nds [21]:

m0 = g0 + �h0; h0 =−g0
〈g0H0G0g0〉0
〈g0; g0〉0 − G0H0g0 ;

m1 = g1 + �h1; h1 =−g1
〈g1H1G1g1〉1
〈g1; g1〉1 − G1H1g1 : (A.6)

For the rest of this appendix we describe one recurrent procedure for obtaining the
functions m0 and m1 in a constructive way. Let us solve this problem by minimizing
the functionals �0;1:

�0;1[m0;1] =−〈m0;1; Gh0;1m0;1〉0;1
〈m0;1; m0;1〉0;1 → min ; (A.7)

by means of the gradient descent method.
Let us denote e0;1 the eigenfunctions of the zero eigenvalues of the operators Gh0;1.

Their explicite values are e0 = 1 and e1 = 0. Let the initial approximations m(0)0;1 to the
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lowest eigenfunctions m0;1 be chosen so that 〈m(0)0;1; e0;1〉0;1 =0. We de�ne the variation
derivative ��0;1=�m0;1 and look for the correction in the form

m(1)0;1 = m(0)0;1 + �m(0)0;1; �m(0)0;1 = �
��0;1
�m0;1

; (A.8)

where scalar parameter �¡ 0 is found from the condition

@�0;1[m
(1)
0;1(�)]

@�
= 0 :

In the explicit form the result reads

�m(0)0;1 = �(0)0;1�
(0)
0;1 ;

where

�(0)0;1 =
2

〈m(0)0;1; m(0)0;1〉0;1
(m(0)0;1�

(0)
0;1 − Gh0;1m

(0)
0;1) ;

�(0)0;1 =
〈m(0)0;1; Gh0;1m(0)0;1〉0;1
〈m(0)0;1; m(0)0;1〉0;1

;

�(0)0;1 = q0;1 −
√√√√q20;1 +

〈m(0)0;1; m(0)0;1〉0;1
〈�(0)0;1; �(0)0;1〉0;1

;

q0;1 =
1

〈�(0)0;1; �(0)0;1〉0;1

(
〈m(0)0;1; Gh0;1m(0)0;1〉0;1
〈m(0)0;1; m(0)0;1〉0;1

− 〈�(0)0;1; Gh0;1�(0)0;1〉0;1
〈�(0)0;1; �(0)0;1〉0;1

)
: (A.9)

Having the new correction m(1)0;1 we can repeat the procedure and eventually generate

the recurrence scheme. Since by the construction all iterative approximations m(n)0;1 re-

main orthogonal to zero eigenfunctions e0;1: 〈m(n)0;1; e0;1〉0;1=0 we avoid the convergence
of this recurrence procedure to the eigenfunctions e0;1.
The quantities �(n)0;1

�(n)0;1 =
〈�(n)0;1; �(n)0;1〉0;1
〈m(n)0;1; m(n)0;1〉0;1

can serve as relative error parameters for controlling the convergence of the iteration
procedure (A.8).

Appendix B. Integration formulas

Let 
 be a sphere in R3 with the center at the origin of the coordinate system or be
the entire space R3. For any function s(x2), where x2 =x ·x; x ∈ R3, and any matrices
A; B; C independent of x the following integral relations are valid:∫



s(x2) �xx( �xx : A) dx =

2
15
�A
∫


sx4 dx ;
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∫


s(x2) �xx( �xx : A)( �xx : B) dx =

4
105

(A · B ◦
+B · A)

∫


sx6 dx ;∫



s(x2) �xx( �xx : A)( �xx : B)( �xx : C) dx

=
4
315

{ �A(B : C) + �B(A : C) + �C(A : B)}
∫


sx8 dx :
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