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Ehrenfest’s argument extended to a formalism of nonequilibrium thermodynamics

Alexander N. Gorban
Institute of Computational Modeling RAS, 660036 Krasnoyarsk, Russia

Iliya V. Karlin,* Hans Christian O¨ ttinger, and Larisa L. Tatarinova
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A general method of constructing dissipative equations is developed, following Ehrenfest’s idea of coarse
graining. The approach resolves the major issue of discrete time coarse graining versus continuous time
macroscopic equations. Proof of theH theorem for macroscopic equations is given, several examples support-
ing the construction are presented, and generalizations are suggested.
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I. INTRODUCTION

In their seminal paper@1#, P. and T. Ehrenfest have give
an argument on how irreversibility can be derived from
versible dynamics. Ehrenfest’s consideration was based
two important notions: Coarse graining~replacement of a
continuous distribution function by a set of averaged val
over a system of phase cells!, and theH curve~a sequence o
values that the entropy takes in the course of a discrete
marching over coarse-grained states!. The impact of Ehren-
fest’s ideas on the long-standing discussions of the foun
tions of nonequilibrium thermodynamics is enormous@2#.
However, to the best of our knowledge, Ehrenfest’s appro
has never been systematically exploited for the purpose
practical derivations of macroscopic equations. It is the g
of this paper to extend Ehrenfest’s argument to a simple
general formalism for such derivations. Starting point of o
consideration is the well known quasiequilibrium appro
mation that, for the sake of completeness, is discussed br
below. Next, a formalization of Ehrenfest’s argument
given. It resolves the major issue, namely, the coarse gr
ing is the discrete time process while the macroscopic
namics is continuous in time. In most of the earlier a
proaches based on a coarse graining, transition to
continuous time dynamics is done by introducing mu
larger time scales. Here we demonstrate that it is possib
reconstruct uniquely the macroscopic dynamics within
time interval between the coarse-graining events. This rec
struction is the main result of our paper, and it leads t
simple formalism in a rather straightforward way. Seve
examples are considered in order to illustrate the const
tion. Finally, we discuss how the suggested formalism
related to other well known methods of nonequilibrium th
modynamics, as well as some generalizations.

II. QUASIEQUILIBRIUM APPROXIMATION
FOR CONSERVATIVE DYNAMICS

Let us consider a conservative dynamics given by
equation,
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ḟ 5J~ f !, ~1!

wheref (x,t) is the distribution function over the phase spa
variablesx at the timet, and where operatorJ may be linear
or nonlinear. Conservation is understood in the followi
sense: There exists a concave functionalS( f ) ~the entropy!
whose values do not change along solutions to Eq.~1!, Ṡ
[^DS( f )uJ( f )&50, for anyf. HereDS( f ) is the first differ-
ential of S in the statef, and angle brackets denote sca
multiplication. Concavity ofS means that the second diffe
ential D2S( f ) defines a nonpositive definite quadratic for
in each statef. A typical example of dynamics~1! is the
Liouville equation for classical particles, andS is the Gibbs-
Shannon entropy functional.

Let M ( f )5$Mk( f )% be a set of linear functionals, wher
Mk( f )5^mku f &. Values of functionalsM are called the mac-
roscopic variables. The quasiequilibrium approximati
f * (M ) maximizes the entropy subject to fixed values ofM
~due to concavity of the entropy, if such a maximizer exis
then it is unique!. Dynamics of macroscopic variables in th
quasiequilibrium approximation is given by equations,

Ṁk5^mkuJ* &. ~2!

HereJ* [J„f * (M )… is the right hand side of Eq.~1! evalu-
ated in the quasiequilibrium. In the sequel we skip the la
of the macroscopic variablesk. The quasiequilibrium ap-
proximations do not change the type of dynamics: Conse
tion of the entropy in the microscopic dynamics implies co
servation of the macroscopic entropy,S* (M )5S„f * (M )…,
in the quasiequilibrium dynamics~2!. Quasiequilibrium ap-
proximations to the Liouville equation are nondissipative.
the case of the Gibbs-Shannon entropy, the use of quasie
librium approximations has been stressed by Jaynes in
well known works@3#. At present, the usefulness of quas
equilibrium approximations is well understood both f
entropy-conserving dynamics@4#, as well as for the dissipa
tive dynamics@5–7#. Relatively less studied remains the ca
of open or externally driven systems, where invariant qua
equilibrium manifolds may become unstable@8#.
©2001 The American Physical Society24-1
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III. EXTENDED EHRENFEST’S ARGUMENT

Let us now consider an extension of the quasiequilibri
dynamics in order to introduce dissipation. This is achiev
by the periodic coarse graining of the microscopic solut
with the fixed time stept.0. Specifically, a sequence o
quasiequilibrium statesf s* is constructed as the iteration o
the following three steps: First, taking the quasiequilibriu
state f s* as the initial condition to Eq.~1!, the solution
f s(t)5Tt f s* is found, whereTt is the formal solution opera
tor of the Eq.~1!. Second, the macroscopic variablesM are
evaluated with the microscopic solutionf s(t) to get Ms11

5^muTt f s* &. Third, the (s11)th quasiequilibrium is defined
as

f s11* 5 f * ~^muTt f s* &!. ~3!

The procedure is then iterated. Periodic coarse graining
described is sufficient to introduce irreversibility, and
prove the discrete-timeH theorem: Quasiequilibrium state
f s* form the Ehrenfest’sH curve; if the quasiequilibrium
approximation is not the solution to the microscopic dyna
ics, then the values of the macroscopic entropystrictly in-
crease along theH curve, S* (Ms11).S* (Ms). The latter
statement is a direct implication of the convexity of the e
tropy function, and of the noninvariance of the quasiequil
rium approximation with respect to the microscopic dyna
ics, and it is visualized in Fig. 1.

However, Eq.~3! as it stands does not solve yet the pro
lem of derivation of the macroscopic equations. Indeed,

FIG. 1. Entropy-conserving dynamics with periodic coar
graining. The dashed convex curves represent the levels of the
tropy. Each straight solid line represents the plane that contain
states with the fixed values of macroscopic parameters. The va
of macroscopic parameters are different on different planes.
points where the planes touch levels of the entropy are the qu
equilibrium states. The totality of these tangent points makes up
quasiequilibrium manifoldV* . Curved arrows represent the micro
scopic solutions, straight arrows~CG! represent the coarse-grainin
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coarse graining is implemented within a discrete time p
ture, and the coarse-graining timet must be finite. There-
fore, continuous time equations for macroscopic variab
need to be specified by an additional construction, which
the main goal of our paper.

IV. CONSTRUCTION OF THE MACROSCOPIC
DYNAMICS

We seek equations for the macroscopic variables in
form,

Ṁ5R~M ,t!, ~4!

where functionsR are yet unknown. They are derived from
the requirement that solutions to Eq.~4! with the initial con-
dition M (ts) coincide at the timets1t with the macroscopic
variables evaluated at the sitef s11* of theH curve,to a given
accuracy O(tn), for everyts5st, and for every initial qua-
siequilibrium condition. This requirement is written as

M (n)~ ts1t!2^muTt
(n) f s* &5O~tn11!, ~5!

where the first term is evaluated using an approximation
the macroscopic equation~4!, while the second term is
evaluated using the corresponding approximation to the
croscopic solution. Polynomial approximations employed
this purpose result in a system of recurrently solvable eq
tions. Let us construct explicitly the first two iterations.

The first-order accuracy in Eq.~5! requires only the zero-
order accuracy for the functionR, and we write R
5R(0)(M )1O(t). From Eq.~4! and from Eq.~3! it follows,
respectively~in order to save notations, we writet instead of
ts),

M (1)~ t1t!5M1tR(0)1O~t2!,

^muTt
(1)f * &5M1t^muJ* &1O~t2!. ~6!

From Eq. ~5! it follows that R(0)5^muJ* &. That is, to the
lowest order of our construction, the macroscopic dynam
~4! is the quasiequilibrium approximation~2!. On the next
order,R5R(0)1tR(1)1O(t2). By the same pattern,

M (2)~ t1t!5M1tR(0)1t2R(1)1
t2

2
DMR(0)

•R(0)1O~t3!,

^muTt
(2)f * &5M1t^muJ* &1

t2

2
^muDJ* •J* &1O~t3!.

~7!

HereDJ* is the first differential of the vector fieldJ in the
quasiequilibrium, whileDMR(0) is the first differential of the
quasiequilibrium vector field with respect to macroscop
variables, and• denote action of corresponding linear oper
tors. Thus,

R(1)5
1

2
@^muDJ* •J* &2DM^muJ* &•^muJ* &#. ~8!
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Higher order approximations are constructed recurrently
entirely the same way. They involve higher order and cr
products of differentials of the microscopic vector field a
of the macroscopic vector field of lower order approxim
tions. Thus, the macroscopic vector fieldR in the continuous
time Eq. ~4! is uniquely constructed as a sequence of po
nomial approximations,R(n)(M ,t)5(m50

n tmR(m)(M ). This
is the main result of our paper:The macroscopic dynamics
uniquely reconstructed from the condition of matching
microscopic and the macroscopic dynamics at the points
coarse graining.

The most important consequence of the above const
tion is that resulting continuous time macroscopic equati
retain the dissipation property of the discrete time coa
graining on each order of approximationn>1. Let us first
consider the entropy production formula for the first-ord
approximation. In order to shorten notations, it is conveni
to introduce the quasiequilibrium projection operator,P* g
5DM f * •^mug&. Direct computation demonstrates that t
entropy production,Ṡ(1)* 5DMS* •@R(0)1tR(1)#, equals

Ṡ~1!
* 52

t

2
^~12P* !J* uD2S* u~12P* !J* &, ~9!

whereD2S* 5D2Su f 5 f* is the second differential of the en
tropy evaluated in the quasiequilibrium. The entropy prod
tion ~9! is non-negative definite due to concavity of the e
tropy. The entropy production~9! is equal to zero only if the
quasiequilibrium approximation is the true solution to t
microscopic dynamics, that is, if (12P* )J* [0. While qua-
siequilibrium approximations that solve the Liouville equ
tion are uninteresting objects~except, of course, for the equ
librium itself!, vanishing of the entropy production in th
case is a simple test of consistency of the theory. Note
the entropy production~9! is proportional tot.

Though Eq.~9! looks very natural, its existence is rath
subtle. Indeed, Eq.~8! is a difference of the two terms
^muD fJ* •J* & ~contribution of the second-order approxim
tion to the microscopic trajectory!, andDM^muJ* &•^muJ* &
~contribution of the second derivative of the quasiequil
rium vector field!. Each of these expressions separately gi
a positive contribution to the entropy production, and Eq.~9!
is the difference of two positive definite expressions. In
higher order approximations, thesesubtractionsare more in-
volved, and explicit demonstration of the entropy product
formulase becomes a formidable task. Yet, it is possible
demonstrate the increase in entropy without explicit com
tation, though at a price of smallness oft. Indeed, let us
denoteṠ(n)* the time derivative of the entropy on thenth
order approximation. Then

E
t

t1t

Ṡ~n!
* ~s!ds5S* ~ t1t!2S* ~ t !1O~tn11!,

whereS* (t1t) andS* (t) are true values of the entropy a
the adjacent states of theH curve. The differencedS
5S* (t1t)2S* (t) is strictly positive for any fixedt, and,
06612
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by Eq. ~9!, dS;t2 for small t. Therefore, if t is small
enough, the right hand side in the above expression is p
tive, and

tṠ~n!
* ~u (n)!.0,

where t<u (n)<t1t. Finally, since Ṡ(n)* (t)5Ṡ(n)* (s)
1O(tn) for any s on the segment@ t,t1t#, we can replace
Ṡ(n)* (u (n)) in the latter inequality byṠ(n)* (t). The sense of this
consideration is as follows: Since the entropy production f
mula ~9! is valid in the leading order of the construction, th
entropy production will not collapse in the higher orders
least if the coarse-graining time is small enough. More
fined estimations can be obtained only from explicit analy
of higher-order corrections.

Finally, a comment on the mathematical structure of
developed approach is in order. The problem of coarse gr
ing is considered here as the problem of mapping of o
~microscopic! dynamic system into another~macroscopic!
dynamic system. While we have focused above on
entropy-conserving dynamics~1!, it is instructive to contrast
it with the dissipative systems. In that case just the mapp
of thevector fieldsis sufficient to derive the dissipative mac
roscopic dynamic system. More specifically, if the micr
scopic system is dissipative~such as given by the Boltzman
equation, for example!, with S its monotonically increasing
Lyapunov functional, then the mapping of the vector fieldJ
attached to each point of the quasiequilibrium manifold w
the help of the quasiequilibrium projectorP* onto the tan-
gent bundle of the quasiequilibrium manifold results in
dissipative macroscopic system. In this case, either thro
extension of the list of the macroscopic variables, or by c
structing corrections to quasiequilibria within the list of ch
sen variables, one can expect to derive sufficiently accu
dissipative macroscopic models.~see, e. g., Ref.@6,7# where
this point is discussed in detail!. However, for the entropy-
conserving systems just a mapping of the vector fields is
sufficient to derive dissipation. For such systems, neither
enlargement of the list of the macroscopic variables, nor c
rections intended to make the quasiequilibrium ‘‘more
variant’’ can result in the dissipative macroscopic equatio
For this reason, we have considered here a more gen
natural projectionbased onsegments of trajectoriesof both
the microscopic and the macroscopic systems, rather tha
just the infinitesimal generators thereof. The simplest imp
mentation of this approach as considered above is base
the mapping of Taylor series expansions of the microsco
and the macroscopic trajectories.

V. EXAMPLES

Same as any coarse-graining approach, the exten
Ehrenfest’s argument is a phenomenological construct
Therefore, the relevance of results can be judged only fr
examples. We first consider the simplest case of the con
vative dynamics, the one-body Liouville equation,ḟ
52va]a f , where f (r,v,t) is the one-particle distribution
function. Subject to appropriate boundary conditions that
assume, this equation conserves the Boltzmann entropS
4-3
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52kB* f ln fdvdr. The local Maxwell distribution function is
the maximizer of the entropy subject to the constraints,

M5$M0 ,Ma ,M4%5E $1,va ,v2% f dv,

wherea51,2,3. Macroscopic variablesM are related to the
usual local hydrodynamic fields. Quasiequilibrium dynam
is given by the Euler equations for nonviscous fluid. In th
case,

R0
(1)50, Ra

(1)5
t

2
]b@nvT

2]aub#,

R4
(1)5

5t

8
]a@nT21vT

4]aT#. ~10!

Here n, u, and T are number density, mean velocity, an
temperature, overline denotes symmetric traceless dyad,
vT5(2kBT/m)1/2 is the thermal velocity. The first-order ap
proximation is the Navier-Stokes equations, with transp
coefficients proportional to the time stept between coarse
graining events. Thus, in this example, coarse graining
substitution for particle’s collisions, and the time stept be-
tween coarse-graining events corresponds to the mean
between collisions. This is not surprising: the finite-tim
coarse graining plays here the same role as the relaxa
time in the Bhatnagar-Gross-Krook~BGK! model @9# of the
Boltzmann collision integral, whereas the outcome~10! cor-
responds to the first-order approximation of the Chapm
Enskog method for that equation. It is well known that t
physical meaning of the relaxation time in the BGK mode
the mean collision time.

The next,O(t2) correction in our formalism would cor
respond to the Burnett-type hydrodynamics@10#. It is well
known that the Burnett hydrodynamic equations, as deri
from the Boltzmann equation, are exposed to difficulties t
preclude the correct entropy production. In particular, sm
perturbations of the global equilibrium due to the Burn
equations become unstable at a sufficiently short wavele
@11,12#. It is of interest therefore to address the question
stability of the Burnett-type hydrodynamics in our scheme
should be also mentioned that the above scheme of de
tion in the higher orders requires a modification for syste
with local conservation laws. Indeed, the density bala
equation,

] tM01]aMa50,

holds identically for any solution of the one-particle Lio
ville equation. Therefore, any method of coarse grain
should respect this identity. In our case, in the higher-or
construction, this amounts to using the Taylor expansion
M0(t1t) only up to the orderO(t2).

It is convenient to introduce dimensionless variables,n8
5n/n0 , ua85ua /AkBT0 /m, and T85T/T0, where n, ua ,
and T are small deviations of the number density, of t
mean velocity, and of the temperature from their equilibriu
values. We also use the reduced time and space varia
06612
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t85t/t, andr85r/AkBT0mt. Omitting the primes, and using
the system of units wherekB /m51, the linearized hydrody-
namic equations to the orderO(t2) are found as follows:

] tn52]aua ,

] tua52]an2]aT1
1

2
]b~]aub!1

1

9
D]an1

1

36
D]aT,

] tT52
2

3
]aua1

5

6
DT1

1

54
D]bub . ~11!

HereD is the Laplace operator. Direct computation demo
strates that the dispersion relation for the system~11! is
stable for arbitrary wave vectors, unlike the Burnett equ
tions ~see Fig. 2!. Note that this result is different from regu
larisation of the Burnett approximation obtained by summ
tion of the Chapman-Enskog expansion@13,14#.

Another well known quasiequilibrium is the maximizer o
the Gibbs-Shannon entropy subject to the one-body distr
tion function f (p,r). The quasiequilibriumN-body distribu-
tion function is the product of one-body distribution fun
tions. Assuming pair interactions in theN-body Liouville
equation, corresponding quasiequilibrium dynamics is giv
by Vlasov’s equation. The correction~8! gives ~for smooth
and finite pair potentials, all expressions below are well
fined!:

] f

]t
1pa

] f

]r a
2n

] f

]pa
^Fa&5Dab

]2f

]pa]pb
. ~12!

Here ^•••& denotes averaging withf. The ~nondissipative!
Vlasov terms are on the left hand side while the right ha
side is the dissipative correction;n is the average numbe

FIG. 2. Dispersion of various modes of the extended hydro
namic equations~11!. The reduced attenuation rates Rev i and the
frequency Imv i of the diffusion modev1, of the two sound modes
v2, and of the two shear modesv3 are given as functions of the
reduced wave vectork. 1: Imv1(k), 2: Rev1(k), 3: Imv2(k), 4:
Rev2(k), 5: Rev3(k). Stability of dispersion relations means th
all functions Rev i are nonpositive for any wave vector. For th
Burnett hydrodynamics~not shown!, function Rev2 becomes posi-
tive after some value of the wave vector@11#.
4-4
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density,f is normalized to the total number of particles,Fa is
the a component of the force between two particles, wh
Dab is the diffusivity matrix,

Dab5
t

2
n@^FaFb&2n^Fa&^Fb&#. ~13!

This expression clearly indicates that the implementation
the coarse-graining procedure with the finitet results in a
short-memory approximation. Equation~12! is not yet suffi-
cient for the following reason: Since the total energy is n
on the list of macroscopic variables, the diffusion term
given in Eq.~12! does not have this conservation law. The
fore, in order to restore the energy conservation, an a
tional restriction is required. Such a restriction is usua
termed a thermostat. In our case, a realization of the ther
stat amounts to replacing the right hand side of Eq.~12! with

Dab

]

]pa
H ] f

]pb
1

pbn2 j b

mkBT
f J , ~14!

where j b is the local average momentum,T is the local ki-
netic temperature, andn is the local number density. Diss
pative terms of the type~14! were derived earlier by man
authors@15#.

Our final example is the derivation of the hydrodynam
equations from the Vlasov kinetic equation@Eq. ~12! with
the right hand side equal to zero#. It should be admitted tha
most of the derivations of the nonequilibrium dynamics fro
the Liouville equation essentially use the linearity of the l
ter ~see a discussion below!, and hence they are formall
inapplicable to nonlinear~mean field! conservative system
such as the Vlasov equation. Our approach is applicabl
such systems without any modification. The lowest order d
sipative equations for the hydrodynamic variables as deri
from the Vlasov equation are as follow:

] tn52]a~nua!,

] t~nua!52]aS n

2
vT

21uaubnD1
t

2
]b~nvT

2]aub!2
t

2
nCa

1
t

2
]bn~ua^Fb&2ub^Fa&!,

] t«52]aS 5

2
vT

2nua1u2uanD1
5t

8
]a~nT21vT

4]aT!

1
3t

4
~vT

2^Fa&]an!1t^Fa&uaub]bn2nuaCa

1n^Fa&^Fa&, ~15!

where«5(3/2)nkBT is the energy density, and

Ca52NE Fa~r,r8!]b8 @nub~r8!#dr8.

The set of Eqs.~15! is quite similar to hydrodynamic equa
tions for dense one-component plasma that have been
06612
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rived from kinetic theory of collision-dominated plasmas
different methods@16#. We defer a further discussion of th
above examples to a separate publication.

VI. DISCUSSION AND CONCLUSION

The fundamental Ehrenfest’s idea of coarse graining
been followed by many authors@2#. In most of the works,
transition to continuous time follows from a consideration
the time scales much larger than the coarse-graining timt.
While these results are very general, they are not dire
relevant to the present analysis that concerns the timeswithin
the coarse-graining time. On the other hand, quasiequ
rium approximations were used by several authors in orde
develop a projection operator formalism for systems ar
trary far from equilibrium. In particular, Robertson@17# has
used the quasiequilibrium projection operator in order to
write the Liouville equation into an equivalent system
equations for the motion along and transverse the quasie
librium manifold. Exactness of this and similar transform
has been stressed by many authors@18#. However, any sys-
tem that is equivalent to the Liouville equation cannot
irreversible, and a version of coarse graining is needed on
later stages of the formalism. Unfortunately, there is no p
scription of how to do this in general, and results typica
verify Onsager-like symmetry relations but not readily t
strict increase in entropy. TheH theorem can be demon
strated only in specific examples when system-dependen
sumptions are accepted. The same difficulty is present in
well known method of nonequilibrium statistical operator
Zubarev: Though the time asymmetry is explicitly intr
duced into the Liouville equation, this is done at the expe
of a complicated limiting transition, and theH theorem is
difficult to prove @19#.

Finally, we stress that the correct implementation of t
Ehrenfest’s coarse graining requires subtraction of the m
roscopic component of motion. The natural projection of t
segments of trajectories requires that, for anyM and givent,

M ~ t1t!5^muTt f * &. ~16!

The latter condition should be treated with care because
left hand side of this expression is defined by thea priori
unknown exact macroscopic equations. In the paper@20#, it
has been suggested to derive continuous time equations
Eq. ~16! as follows:

M1tṀ'^muTt f * &. ~17!

In a contrast to our derivation, the latter expression does
attempt to construct a mapping of the microscopic into
macroscopic dynamics. Specifically, Eq.~17! ignores an
expansion of the macroscopic equation@more precisely, Eq.
~17! implements what is known as the differential pursui#.
In particular, if the second-order approximation is em
ployed in Eq. ~17!, the entropy production is,Ṡ*
52(t/2)^J* uD2S* uJ* &. This expression is positive definite
so an ‘‘increase in entropy’’ is present, but, in contrast to
correct Eq.~9!, it does not turn into zero when the quasiequ
librium solves the microscopic equation, as it should
4-5
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Therefore, Eq.~17! cannot be valid as a systematic meth
of derivation of dissipative dynamics.

In conclusion, in this paper, for the first time to the best
our knowledge, the approach of Ehrenfest’s has been sys
atically formalized to a simple and self-consistent tool
derivation of physically sound, clearly dissipative equatio
As is, the resulting method qualifies for a class of ‘‘me
free path theories,’’ incorporating in itself a simple pheno
enological element~coarse graining!, and in that respect is
close in spirit~but certainly not in the implementation, th
present approach is even simpler! to the well known Kirk-
wood’s time averaging approach. There are many ways
present approach can be improved and generalized, in
ticular, the following.

~i! Going away from the short-memory approximatio
based on the finite coarse-graining timet corresponds to
taking the limit t→` in the Eq. ~16!. On qualitative
grounds, large enough coarse-graining time will allow
correlations to be developed. This point is important a
deserves a further study@21#. Here we shall mention only the
following result: Let us assume that the microscopic dyna
ics is defined by a linear equation,ḟ 5L f , whereL is a linear
~Liouville! operator. Let us also assume the equilibriumf eq,
such thatL f eq50. For the sake of simplicity, let us als
assume that the macroscopic variablesMk are normalized in
such a way that̂ mku f eqms&5dks , and thatm051 is in-
cluded in the list of themk’s. To the first order in the
macroscopic variablesM, the quasiequilibrium is a linea
manifold, f * (M )5 f eq(11(kÞ0Mkmk), whereas the quasi
equilibrium projector isP* 5 f eqP, whereP5(kumk&^mku.
The near-equilibrium dynamics of the macroscopic variab
M has the form,
l

06612
f
m-
r
.

-

e
ar-

l
d

-

s

Ṁ5AM,

whereA is yet unknown linear operator. Equation~16! may
be written for arbitrary fixedt as follows:

@exp~tA!M #k5^mkuexp~tL ! f * ~M !&.

Then, formally,

Akl5K mkU lim
t→`

1

t
ln@P exp~tL ! f eqP#Uml L , ~18!

whereAkl are the matrix elements of the operatorA. Thus,
the exact near-equilibrium macroscopic dynamics is
pressed in terms of the~operator! Liapunov exponent. More-
over, in the simplest case of a wide separation of time sc
of the macroscopic and of the microscopic motions, the m
familiar Green-Kubo form can be derived from Eq.~18!.

~ii ! Without any changes, the method is applicable in
case when the dynamic equation~1! is dissipative, in particu-
lar, to the Fokker-Planck equation.

~iii ! The use of the thermodynamic projector@6,7# allows
to apply the method to nonquasiequilibrium approximatio
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@4# H.C. Öttinger, Phys. Rev. E62, 4720~2000!.
@5# A.N. Gorban,Equilibrium Encircling. Equations of Chemica

Kinetics and Their Thermodynamic Analysis~Nauka, Novosi-
birsk, 1984!.

@6# A.N. Gorban and I.V. Karlin, Physica A190, 393 ~1992!.
@7# A.N. Gorban and I.V. Karlin, Transp. Theory Stat. Phys.23,

559 ~1994!.
@8# P. Ilg and I.V. Karlin, Phys. Rev. E62, 1441~2000!.
@9# P. Bhathnagar, E. Gross, and M. Krook, Phys. Rev. A94, 511

~1954!.
@10# S. Chapman and T. Cowling,Mathematical Theory of Non-

uniform Gases, 3d. ed.~Cambridge University, Press, Cam
bridge, England, 1970!.
-

-

@11# A.V. Bobylev, Dokl. Akad. Nauk~SSSR! 262, 71 ~1982! @Sov.
Phys. Dokl.27, 29 ~1982!#.

@12# F.J. Uribe, R.M. Velasco, and L.S. Garcı´a-Colı́n, Phys. Rev. E
62, 5835~2000!.

@13# A.N. Gorban and I.V. Karlin, Zh. E´ksp. Teor. Fiz.100, 1153
~1991! @Sov. Phys. JETP73, 637 ~1991!#.

@14# A.N. Gorban and I.V. Karlin, Phys. Rev. Lett.77, 282 ~1996!.
@15# J.L. Lebowitz, H.L. Frisch, and E. Helfand, Phys. Fluids3, 325

~1960!; S.A. Rice and P. Gray,The Statistical Mechanics of
Simple Liquids~Wiley, New York, 1965!.

@16# R. Balescu,Transport Processes in Plasmas, Classical Trans-
port Theory Vol. 1~North-Holland, Amsterdam, 1988!.

@17# B. Robertson, Phys. Rev.144, 151 ~1966!.
@18# H. Grabert,Projection Operator Techniques in Nonequilib

rium Statistical Mechanics~Springer, Berlin, 1982!.
@19# D. Zubarev, V. Morozov, and G. Ro¨pke,Statistical Mechanics

of Nonequilibrium Processes~Akademie Verlag, Berlin,
1996!, Vol. 1.

@20# R.M. Lewis, J. Math. Phys.8, 1448~1967!.
@21# A.N. Gorban and I.V. Karlin~unpublished!.
4-6


