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The additive generalization of the Boltzmann entropy
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Abstract

There exists only one generalization of the classical Boltzmann-Gibbs-Shannon entropy func-

tional to a one-parametric family of additive entropy functionals. We find analytical solution to

the corresponding extension of the classical ensembles, and discuss in some detail the example of

the deformation of the uncorrelated state.
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I. INTRODUCTION

The growing interest to non-classical entropies in recent years [1, 2] is motivated by the

fact that they can be used to describe observable statistical effects such as: (i) Non-classical

tails of distribution functions which can deviate significantly from Gaussian distribution. In

particular, this asymptotics can be power-law (“long tails”) or, instead, distribution func-

tions can decay in a more rapid fashion (“short tails”), in particular, they can become equal

to zero at finite distance (“cut tails”). (ii). Strong correlations between subsystems in equi-

librium and conditionally-equilibrium (quasi-equilibrium) states. (iii) In particular, even at

a vanishingly weak interaction between subsystems, when the classical Boltzmann-Gibbs-

Shannon entropy (BGS) would lead to no correlations, strong correlations can be observed in

the equilibrium. This may sound somewhat paradoxal: Joining non-interacting subsystems

with equal values of the intensive quantities, and switching on an infinitesimal weak interac-

tion, we produce a strongly correlated equilibrium. However, the simplest example is readily

provided (though not related to non-classical entropies per se) by the microcanonical en-

semble of finite systems: If subsystems are not interacting at all, then there is an additional

conservation law, the energies of the individual subsystem, and the product of the micro-

canonic distributions is the equilibrium. However, an arbitrarily weak interaction will surely

destroy this conservation law, and the equilibrium becomes the usual microcanonic ensemble

(the equipartition over the surface of constant total energy). For finite number of particles

in the subsystems, this latter state is correlated, and it does not factor into the product of

the microcanonical distributions of the subsystems. It is only in the thermodynamic limit

where the theorem about the equivalence of the ensembles [3] states the tendency to zero

of correlations of (almost) noninteracting subsystems (in the domain of its applicability, of

course). We should remark that empirically found asymptotics of the distribution functions

should be always treated with care since they can turn out to be “intermediate asymptotics”

rather than true limits.

The entropic description of all these effects in the spirit of Gibbs ensembles is technically

advantageous (same as any variational principle) but this is by far not the only merit. If the

entropy is consistent with the kinetics, and varies monotonically in time, then a very useful

construction becomes available. This is the conditional equilibrium (or quasi-equilibrium,

with local equilibrium as a specific example). The quasi-equilibrium describes partially re-
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laxed systems, according to the idea of the fast-slow decomposition of motions: Fast variables

have almost reached equilibrium at almost fixed values of slow variables. Conditional equi-

librium is described as the probability distribution which brings to maximum the entropy

S(p) at fixed values of the slow variables, M = m(p):

S(p) → max, m(p) = M. (1)

Usually, when one attempts to introduce non-classical entropies in order to use these

advantages, there is a price to be paid. Non-classical entropies at use in most of the contem-

porary studies violate at least one of the following important and familiar properties of the

BGS entropy: (i) Additivity: The entropy of the system which is composed of independent

subsystems equals the sum of the entropies of the subsystems. ( ii) Trace-form: The entropy

is a sum over the states (see below). (iii) Concavity of the entropy. For example, the Tsallis

entropy [1] is not additive, the Rényi entropy [4] is not of the trace form.

Violation of additivity cannot be motivated by the fact that “in reality, all subsystems are

interacting” [5]. Indeed, the additivity axiom is the conditional statement: If the systems

are independent, then the entropy of the joint system equals the sum of the entropies of

subsystems. Probability theory, even when studying whatever strongly dependent events, is

based on such notions as independence, independent trials etc [6]. Giving up these notions

simply on the grounds that events in nature depend on each other is misleading.

In this paper we demonstrate how the description of both long and short tail distributions,

growth of correlations etc can be achieved on the basis of the entropy approach, and without

a violation of neither the additivity nor of the trace form requirements (however, with a

violation of the concavity only for the description of cut tail distributions). Such a description

becomes available only if one uses a one-parametric family of entropies introduced recently

[7]. We establish analytic formulae for conditional maximizers of these entropies which

makes operations within the present formalism almost as easy as in the case of a Gaussian

distribution pertinent to the BGS entropy.

II. ADDITIVE TRACE-FORM ENTROPIES FOR MARKOV PROCESSES

The basic model we consider here is the finite Markov chain (finiteness and discreteness are

by no means the crucial restriction, and are employed only in order to avoid the convergence
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questions). The time evolution of the probabilities pi, where i is the discrete label of the

state, is given by master equation,

ṗi =
∑

j,j 6=i

kij

(

pj

p∗j
−

pi

p∗i

)

, kij = kji ≥ 0. (2)

We consider only systems which allow for a positive equilibrium, p∗
i > 0 (for infinite systems,

it is often advantageous to use unnormalized p∗). We recall [7, 8] that, for each convex

function of one variable, h(x), one constructs the Lyapunov function Hh(p) which does not

increase on solutions to Eq. (2), where

Hh(p) =
∑

i

p∗i h(pi/p
∗
i ). (3)

[We consider below Hh-functions rather than entropy functions Sh = −Hh.]

Among the set of Lyapunov functions (3), there exists a one-parametric subset of additive

Lyapunov functions, Hα, 0 ≥ α ≥ 1:

Hα =
∑

i

p∗i hα(pi/p
∗
i ),

hα(x) = (1 − α)x ln x − α ln x. (4)

In particular,

H0 =
∑

i

pi ln(pi/p
∗
i ),

H1 = −
∑

i

p∗i ln(pi/p
∗
i ).

Additivity of functions Hα (4) is readily checked [7, 8]: If p = pij = qirj, and also if

p∗ = p∗ij = q∗i r
∗
j , then

Hα(p) = Hα(q) + Hα(r).

It can be demonstrated that the family (4) is unique (up to a constant factor): There are

no other additive trace-form functions among Lyapunov functions (3) of master equation.
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III. SOLUTION TO THE MAXIMUM ENTROPY PROBLEM

Since a factor in front of Hα is irrelevant, it proves convenient to use a different parame-

terization of the family (4),

Hα =
∑

i

[pi ln(pi/p
∗
i ) − αp∗i ln(pi/p

∗
i )], (5)

where α ≥ 0, and where the case α → ∞ should be considered separately,

H∞ = −
∑

i

p∗i ln(p/p∗i ). (6)

In order to address the construction of the quasi-equilibrium in a general setting, we assume

the macroscopic variables M = m(p), where Ms =
∑

i msipi, and consider the problem (1)

with S = −Hα. Solving this problem with the method of Lagrange multipliers, we find:

∂Hα

∂pi
= λ0 +

∑

s

λsmsi, (7)

where Lagrange multiplier λ0 corresponds to normalization, and λs to the rest of the con-

straints. Let us denote −Λi the right hand side of Eq. (7). With this, Eq. (7) may be

written,

ln(pi/p
∗
i ) − α(p∗i /pi) = −Λi. (8)

Solution to an equation,

ln q − αq−1 = −Λ, (9)

may be written as follows:

q = e−Λelm(αeΛ), (10)

where we have introduced notation lma (modified logarithm) for the function which is the

solution to the transcendent equation,

xex = a.

The function lm satisfies the following identities:

lma = ln a − ln lma, (11)

lma = ln a − ln(ln a − ln(ln a − ln(. . . )) . . . ). (12)
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Identity (12) is the recurrent application of identity (11). A different representation of

solution (10) reads:

q =
α

lm(αeΛ)
. (13)

From the representation (10), the asymptotics at α → 0, and fixed Λ, is obvious: q → e−Λ,

and which corresponds to the usual Boltzmann distribution. On the other hand, represen-

tation (13) reveals the asymptotics at Λ → ∞:

q ∼
α

ln α + Λ
.

For a symmetric distribution on the axis, and for Λ = λ0 + λ2x
2, the first of the limits

just mentioned gives the Gaussian distribution, while the second limit gives the Cauchy

distribution. The corresponding distribution function for the limiting case H∞ is simply the

Cauchy distribution on the axis. Among non-symmetric Cauchy distributions of the form,

p = (λ0 + λ1x + λ2x
2)−1, there are distinguished cases with a twice degenerated zero in

the denominator: p = (λ(x − a))−2. When one attempts to normalize this distribution by

choosing a convergent sequence of functions, one gets a Dirac δ-function, δ(x−a) which can

be interpreted as a microcanonic ensemble.

Thus, the quasi-equilibrium distribution has the form:

p = p∗e−Λelm(αeΛ) =
αp∗

lm(αeΛ)
. (14)

[We have omitted indices of states in p, p∗, and Λ.] Formula (14) is the main result of this

paper.

It is also interesting to address the formal extension of the result (14) to negative α.

Function lma is defined and is continuous for a ≥ −e−1 (lma ≥ −1). At a → −e−1, we have

the limit, dlma/da → ∞. If we formally extend, lma = −∞ for a < −e−1, then Eq (14) is

a distribution with “cut tail”. With this, there will be defined a non-zero ratio p/p∗:

inf{p/p∗|p 6= 0} ≥ |α| > 0, (15)

that is, either p ≥ |α|p∗, or p = 0. This construction is similar to a Maxwell construction of

a stretched spinodal (the cut at the inflection point), and not to the global maximum of the

entropy. Whereas such constructions are always necessary when working with non-convex

thermodynamic potentials, will not further discuss the case α < 0 in this paper.
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IV. QUASI-EQUILIBRIUM ENSEMBLES NEAR THE BGS LIMIT

For the classical BGS entropy (α = 0), the quasi-equilibrium distribution has the form:

p = p∗e−Λ, (16)

where Λ is the corresponding gradient of the entropy at the quasi-equilibrium, expressed in

terms of Lagrange multipliers. Let us study the quasi-equilibrium (14) for small α. To the

first order, we get:

p = p∗
(

e−Λ + α
)

+ o(α). (17)

[Note that, in this expansion, dependence of Λ on the values of the macroscopic variables

M is implicit. Explicit evaluation of this dependence requires, in addition, an expansion of

Λ in terms of α which is used below when studying concrete examples.]

Substituting equation (17) into the kinetic equation (Markov chain in the present context,

into the Liouville equation in the context of particle’s dynamics, or, generally speaking, into

the linear equation of the microscopic Markovian process), we easily see that the term αp∗

gives no contribution to the resulting quasi-equilibrium dynamics. Indeed, we first notice

that the relation between the time derivative ṗ with the Lagrange multipliers is the same,

as for the classical Boltzmann’s distribution (16): If L is the linear operator of Markovian

dynamics, ṗ = Lp, then, substituting for p on the right hand side of this equation the

expression (17), and using linearity, we get

L
(

p∗
(

e−Λ + α
))

= L
(

p∗e−Λ
)

.

Furthermore, defining the shifted macroscopic variables, Mα = m(p − αp∗), we find that

for the classical quasi-equilibrium dynamic equation, dM/dt = m(Lp(M)), where Lp(M)

is the microscopic vector field evaluated at the classical quasi-equilibrium states p(M) =

p∗ exp(−Λ(M)) is affected only by a shift M → Mα, to the first order in α. In other words,

the quasi-equilibrium dynamics of the ensemble (14) is driven by the classical dynamics

resulting from the BGS entropy and Boltzmann distributions (16) to the first order in α.

In order to compute the quasi-equilibrium to second order in α, we must use the expansion

of lma to third order,

lma = a − a2 + (3/2)a3 + o(a3).
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Then

p = p∗
(

e−Λ + α −
1

2
α2eΛ

)

+ o(α2). (18)

Further corrections can also be easily computed using higher-order terms in the expansion

of the lm. We now shall consider a specific example of the formula (18).

V. EXAMPLE: ENHANCEMENT OF PARTICLE’S CORRELATIONS

In order to illustrate the effect of second order deviations from the BGS case, we apply Eq.

(18) to the classical quasi-equilibrium defined by the one-particle configurational distribution

function f1(r), where r is position variable. Assuming, as usual, the equipartition for the

reference equilibrium, p∗ = 1/V N , where V is the volume of the system, and N is the number

of particles, we get e−Λ = eλ0

∏N
i=1 Ψ(ri), where Lagrange multiplier λ0 is responsible for

normalization. Then the N -body quasi-equilibrium distribution function to second order in

α reads,

V Np = eλ0

N
∏

i=1

Ψ(ri) + α −
α2

2eλ0

∏N
i=1 Ψ(ri)

+ o(α2). (19)

Our goal now is to compute the two-body configurational distribution function,

f2(r, q) = N(N − 1)

∫

p(r, q, r3, . . . , rN)dr3 . . . drN ,

in the quasi-equilibrium (19). We recall that the classical result for the BGS entropy gives the

uncorrelated two-body distribution, f2(r, q) ∼ f1(r)f1(q), which also corresponds to the limit

(α = 0) of Eq. (19). Computation to the order α2 requires expansion of Lagrange multipliers

λ0 and Ψ to the corresponding order. This computation is straightforward although tedious,

thus we give here only the final result: The two-body quasi-equilibrium configurational

distribution function f2 reads:

N

N − 1
f2(r, q) = (1 + α + α2)f̃1(r)f̃1(q) + αn2 −

α2

2
n2BNϕ1(r)ϕ1(q) + o(α2), (20)
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where n = N/V is the average number density, and where we have introduced notation,

f̃1(r) = f1(r) − αn, (21)

ϕ1(r) =
f1(r)

n
−

n

Bf1(r)
, (22)

B =
1

V

∫

V

n

f1(r)
dr. (23)

It is readily checked that the result (20) gives f2 = (N − 1)N−1f1f1 at α = 0 which is

identical with the classical uncorrelated pair distribution with correct normalization [9].

The first two terms in Eq. (20) amount again to the uncorrelated state with homogeneously

shifted one-particle distributions (f̃1 (21) instead of f1, which amounts to a homogeneous

subtraction of the average density times α). The underlined term (of the order of α2), is the

contribution responsible for correlations due to the use of the non-classical entropy. It also

has a form of a product, but not of the distribution functions, rather, of functions of one

variable (22). In order to see the effect of this term more explicitly, we assume

f1(r) = n(1 + ζ(r)N−1/2), (24)

where ζ is a function with zero average, and finite amplitude, 〈ζ〉 = 0, 〈ζ2〉 = σ2, where we

have introduced notation for averaging over the volume, 〈h〉 = V −1
∫

V
hdr. Assuming large

(but finite) number of particles, we find to the leading order in N :

B = 1 + σ2N−1 + o(N−1), BN = eσ2

+ o(1).

Thus,

N

N − 1
f2(r, q) ≈ (1 + α + α2)f̃1(r)f̃1(q) + αn2 − 2α2n2σ2eσ2

N−1θ(r)θ(q), (25)

where we have denoted θ = σ−1ζ, 〈θ2〉 = 1. This correlation is negative once the sign of

the deviations from the homogeneity at points r and q are the same, and positive if these

deviations have the opposite signs.

VI. CONCLUSION

Once a classical statistical system is out of the thermodynamic limit, the exclusive char-

acter of the Boltzmann-Gibbs-Shannon entropy is fading away, and classical ensembles are
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not equivalent anymore. Whereas using the microcanonical ensemble for any description

of finite systems may be most appropriate, this route is very complicated, at least from

a computational standpoint. For that reason, seeking an entropic description of effects of

finiteness is a relevant option.

We stress it once again, that the one-parametric family Hα, Eq. (4) and (5), is the

unique generalization of the classical Boltzmann-Gibbs-Shannon entropy consistent with

the additivity and the trace-form requirements simultaneously. It is reasonable therefore to

study its applicability to a description of statistical systems out of the strict thermodynamic

limit. The main result of this paper is the analytical description of the quasi-equilibria for

this family of the entropy functions. We have demonstrated that the solutions to the entropy

maximization problems are accessible in a fairly simple way, and which amounts to studying

a function of one variable, lma. This makes studies of the non-classical ensembles described

herein relatively uncomplicated, especially in the vicinity of the classical BGS solutions,

where we expect, in the first place, the theory to be meaningful. Eventually, predictions can

be compared in molecular dynamics simulations by making the size of the system smaller,

and/or the number of particles smaller. This is left for a future work.
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[4] A. Rényi, Probability Theory (North-Holland, Amsterdam, 1970).

[5] C. Beck, Europhys. Lett. 57, 329 (2002).

[6] M. Kac, Probability and Related Topics in Physical Sciences (Interscience, NY, 1957).

[7] A. N. Gorban and I. V. Karlin, cond-mat/0205511.

[8] A. N. Gorban, Equilibrium Encircling. Equations of Chemical Kinetics and Their Thermody-

namic Analysis (Nauka, Novosibirsk, 1984).

[9] N. N. Bugaenko, A. N. Gorban, and I. V. Karlin, Teor. Mat. Fiz. 88, 430 (1991).

10


