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Introduction

Variational inequalities

Minimization of a convex function on a convex set

f(u) = min
ũ∈F

f(ũ) ⇐⇒
(
ũ− u

)
· ∇f(u) > 0 ∀ ũ ∈ F

u1

u2

O

F

ū

ũ
u

Simple example

A projection u = π(ū) onto the convex and closed set:

f(u) = ‖u− ū‖2, ∇f(u) = 2
(
u− ū

)
u ∈ F :

(
ũ− u

)
·
(
u− ū) > 0 ∀ ũ ∈ F

Variational inequality for monotone operator Q(u) 6= ∇f(u):

(ũ− u
)
·Q(u) > 0, u, ũ ∈ F

It has a unique solution if F is convex closed set and if Q(u) is strongly monotone:

(u′ − u) ·
(
Q(u′)−Q(u)

)
≥ α2‖u′ − u‖ ∀ u, u′ ∈ F (α 6= 0)
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Introduction

The Mises principle of maximal plastic power

A power of plastic dissipation achieves maximum on actual stresses:

σσσ : eeep > σ̃σσ : eeep, σσσ, σ̃σσ ∈ F
(
−
(
σ̃σσ − σσσ) : eeep ≥ 0

)
Application of Kuhn–Tucker’s theorem

F =
{
σσσ
∣∣ fj(σσσ) 6 0 (j = 1, ..., k)

}
, L(σσσ, λ) = σσσ : eeep +

k∑
j=1

λj fj(σσσ)

(3)

(1) (2)

eeep

eeep
Associative plastic flow rule:

eeep =
k∑
j=1

λj
∂fj(σσσ)

∂σσσ
, λj > 0, λj fj(σσσ) = 0

Complete system of the theory of elastic-plastic
Prandtl–Reuss flow theory:

ρ
∂v

∂t
= ∇ · σσσ + ρg, eeep =

1

2

(
∇v +∇v∗

)
− aaa :

∂σσσ

∂t
,

(
σ̃σσ − σσσ

)
: eeep > 0
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Introduction

Elastic Cosserat continuum

The complete system of equations contains the equations of translational and rotational motion,
kinematic and constitutive equations.

ρ
∂v

∂t
= ∇ · σσσ + ρ g, j

∂ω

∂t
= ∇ ·mmm− 2σa + j q

∂ΛΛΛ

∂t
= ∇v +ωωω,

∂MMM

∂t
= ∇ω

σσσ = λ (δδδ : ΛΛΛs)δδδ + 2µΛΛΛs + 2αΛΛΛa

mmm = β (δδδ : MMMs)δδδ + 2 γMMMs + 2 ηMMMa

Hyperbolicity conditions

3λ+ 2µ > 0, µ, α > 0; 3β + 2 γ > 0, γ, η > 0

Velocities of elastic waves

cp =

√
λ+ 2µ

ρ
, cs =

√
µ+ α

ρ
, cm =

√
β + 2 γ

j
, cω =

√
γ + η

j

v – velocity vector, ω – vector of angular velocity, j – moment of inertia of particles

σσσ – stress tensor, mmm – tensor of couple stresses

ΛΛΛ andMMM – tensors of strain and curvature, g and q – mass forces and couple forces

λ, µ, α, β, γ, η – phenomenological parameters
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Introduction

Matrix form of the equations

Thermodynamically consistent equations of the theory of elasticity:

A
∂U

∂t
=

n∑
i=1

Bi
∂U

∂xi
+QU +G

When taking into account plastic deformation, the system replaced by a variational inequality:

(Ũ − U) ·
(
A
∂U

∂t
−

n∑
i=1

Bi
∂U

∂xi
−QU −G

)
> 0, Ũ , U ∈ F

F – convex and closed set determined by yield criterion

U(t, x) – m-vector of unknown functions, Ũ – a variable vector

A – symmetric positive definite matrix of coefficients before time derivatives
Bi – symmetric matrices of coefficients before derivatives with respect to spatial variables
Q – antisymmetric matrix, G – vector of bulk forces and prestresses

n – spatial dimension of the problem (1, 2 or 3)

dimension m of the system and the specific type of matrices–coefficients
determined by the used mathematical model
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Introduction

Generalised solutions

Variational inequality for a thermodynamically consistent hyperbolic operator of Godunov’s type:

(Ũ − U) ·
(
∂ϕ(U)

∂t
−

n∑
i=1

∂ψi(U)

∂xi
−G

)
> 0, Ũ , U ∈ F

Fizmatlit, 1997 ϕ(U) =
∂Φ(U)

∂U
, ψi(U) =

∂Ψi(U)

∂U

Divergent form of variational inequality:

Ũ ·
(
∂ϕ(U)

∂t
−

n∑
i=1

∂ψi(U)

∂xi
−G

)
>

∂

∂t

(
U · ϕ(U)− Φ(U)

)
−

−
n∑
i=1

∂

∂xi

(
U · ψi(U)−Ψi(U)

)
− U ·G, Ũ, U ∈ F

Strong discontinuity relations

Uniqueness of the solution of the Cauchy problem

Continuous dependency on initial data

Correctness of setting dissipative boundary conditions
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Introduction

Differently resistant materials

The most part of natural and especially artificial
materials have different resistance in tension and
compression:
– metal foams
– fiber reinforced composites
– granular materials
– soils
– rocks
– etc.
Hence, this property must be taken into account
under mathematical modeling.

Experimental study

J. Banhart, J. Baumeister. Deformation characteristics of metal foams.
J. Mater. Sci., 33(6): 1431–1440, 1998.

Vladimir M. Sadovskii (ICM SB RAS) Modeling Based on a Rheological Approach AMiTaNS’19 23.06.2019 8 / 59



Rheological approach Rigid contact – new rheological element

Constitutive relations of a rigid contact

Springer, 2012

http://link.springer.com/book/10.1007/978-3-642-29053-4

Downloads – 10502

σ

σ

σ

σ

σ

σ

σ

σ
σ 6 0, ε > 0, σε = 0 ⇔

{(
σ̃ − σ

)
: ε 6 0 σ, σ̃ 6 0(

ε̃− ε
)

: σ 6 0 ε, ε̃ > 0(
σ̃σσ − σσσ

)
: εεε 6 0 σσσ, σ̃σσ ∈KKK ⇔

(
ε̃εε− εεε

)
: σσσ 6 0 εεε, ε̃εε ∈ CCC

KKK =
{
σσσ | σσσ : εεε 6 0 for all εεε ∈ CCC

}
⇔ CCC =

{
εεε | σσσ : εεε 6 0 for all εεε ∈KKK

}
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Rheological approach Granular and porous materials

Rheological schemes of elastic-plastic granular
materials

σ

σ

ideal granular material
with elastic particles

σ

σ

heteromodular
elastic material

σ

σ

elastic-plastic
granular material

Rheological schemes with 3 elements: elastic spring, rigid contact, plastic hinge
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Rheological approach Granular and porous materials

Rheological schemes of viscoelastic granular materials

σ

σ

viscoelastic granular material
(Maxwell model)

σ

σ

viscoelastic granular material
(Kelvin–Voigt model)

Rheological schemes with 3 elements: elastic spring, viscous damper
and rigid contact
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Rheological approach Granular and porous materials

Rheological schemes of porous materials

In this way we construct the models of porous materials taking into account
elastic, plastic and viscous properties.

σ

σ

elastic porous medium

σ

σ

elastic-plastic
porous medium

σ

σ

elastic-viscoplastic
porous medium
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Dynamics of granular and porous materials

Modeling of granular media

σ

σ

Strain tensor εεε = εεεe + εεεc + εεεp

The inequality of Haar and Karman

(σ̃σσ − σσσ) :
(
aaa : σσσ − εεεe − εεεc

)
> 0, σσσ, σ̃σσ ∈ K

By the definition of the projection it means

σσσ = πa
(
aaa−1 :

(
εεεe + εεεc)

)
The Mises inequality (σ̃σσ − σσσ) : ε̇εε p 6 0, σσσ, σ̃σσ ∈ F

Equations of motion ρ v̇ = ∇ · σσσ + ρ g

Kinematic equations 2 ε̇εε = ∇v + (∇v)∗

The set F of admissible variations is defined by the Mises yield condition:
F =

{
σσσ
∣∣∣ τ(σσσ) 6 τs

}
. As a convex cone K of stresses, allowed by the strength criterion, the

Mises–Schleicher circular cone K =
{
σσσ
∣∣∣ τ(σσσ) 6 æ p(σσσ)

}
is used.

σσσ – stress tensor, εεε – strain tensor: εεεe, εεεc, εεεp – elastic, granular and plastic parts

τ(σσσ) – intensity of tangential stresses, p(σσσ) – hydrostatic pressure

τs – yield point of particles, æ – parameter of internal friction

Vladimir M. Sadovskii (ICM SB RAS) Modeling Based on a Rheological Approach AMiTaNS’19 23.06.2019 13 / 59



Dynamics of granular and porous materials

Porous materials

Elastic material

σ

σ

a

b

θ0

Rheological scheme

O
ε

σ

− θ0

Diagram of
tension–compression

The behavior of a material
in tension and
in compression before
the collapse of pores is
simulated by an elastic
spring with given compliance
modulus a, and the increase
in stiffness after collapse is
simulated by an additional
spring with the compliance
modulus b.
A diagram of uniaxial
tension–compression of
a porous material is
represented as
a two-segment broken line.
Such scheme describes
the elastic process that
occurs without dissipation
of mechanical energy.
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Dynamics of granular and porous materials

Porous materials

Elastic-plastic material
σ

σ

a b

θ0

Rheological scheme

O
ε

σ

− θ0

σ+
s

−σ−s

Diagram of tension–compression

Under the tensile stress σ+
s a skeleton goes into the state of plastic flow,

and under the compressive stress −σ−s the plastic loss of stability takes place.
The stage of elastic-plastic deformation of a solid material after the collapse of pores
is described by the rheological scheme of linear hardening. A diagram of uniaxial
tension–compression is represented as a four-segment broken line.
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Dynamics of granular and porous materials Governing Relations

Complete system of equations
Mathematical model has the form:

ρ v̇ = ∇ · σσσ + f

(s̃ss− sss) : (aaa : ṡss−∇v) > 0, s̃ss, sss ∈ F

bbb : q̇qq =
1

2
(∇v +∇v∗), σσσ = s+ πK(qqq + qqq0)

ρ = ρ0 (1− θ0) – initial density, v – velocity vector
∇ – vector of gradient with respect to spatial variables
f is the vector of bulk forces

Vector v, tensors sss and qqq are unknown functions in this model.

This system can be written in matrix form as a variational inequality:

(Ṽ − V ) ·
(
A
∂U

∂t
−

n∑
i=1

Bi
∂V

∂xi
−QV −G

)
> 0, Ṽ , V ≡ πK(U) ∈ F

F – convex and closed set determined by yield criterion

U(t, x) – m-vector of unknown functions, Ũ – a variable vector
A – symmetric positive definite matrix of coefficients before time derivatives,
Bi – symmetric matrixes of coefficients before derivatives with respect to spatial variables
Q – antisymmetric matrix, G – vector of bulk forces and prestresses
n – spatial dimension of the problem (1, 2 or 3)
dimension m of the system and the specific type of matrices–coefficients
determined by the used mathematical model
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Dynamics of granular and porous materials Parallel computational algorithm

Numerical algorithm

The algorithm of numerical implementation of mathematical models is explicit in time
and is constructed by means of the splitting method with respect to physical processes
in the following way:

first, the elastic problem is solved at each time step
next, the obtained solution is corrected to take into account
plastic and granular properties of a material

For the solution of elastic problem the two-cyclic splitting method with respect to
the spatial variables is used

One-dimensional hyperbolic systems of equations of the form

A
∂Uk

∂t
= Bi

∂Uk

∂xi
+Gi

(k = 1, 2n – the number of the splitting stage, i = 1, n – the direction of splitting)
in spatial directions are solved by means of the monotone finite-difference ENO–scheme
of the “predictor–corrector” type; piecewise-linear splines, discontinuous at the boundaries
of meshes, are constructed by a special procedure of limit reconstruction, which enables
one to improve an accuracy of a numerical solution

Plasticity and granularity of materials are taken into account by means of a special
algorithms for the correction of stresses, used in computations
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Dynamics of granular and porous materials Parallel computational algorithm

Structure of parallel program

Computational algorithm is implemented as a parallel program system for the solution of
dynamic problems in structurally inhomogeneous deformable materials on multiprocessor
computers by means of the SPMD technology in Fortran using the MPI library.

1 Preprocessor program
grid generation
uniform distribution of initial data between parallel computational nodes
packing of its part of data in binary files of direct access by each node of a cluster

2 Main program
step-by-step numerical computation of a problem
on each node of a cluster

data exchange between the processes

special conservation of resulting data
in the control points The scheme of exchange

with contour meshes
3 Postprocessor program

compression of files, containing the results of computations in the control points
graphical representation of results
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Dynamics of granular and porous materials Parallel computational algorithm

Registration of programs in Rospatent
Parallel program systems for the solution
of two-dimensional and three-dimensional
elastic-plastic problems of the dynamics
of granular media

Certificates of state registration of computer programs
no. 2012613989 and 2012613990 from 28.04.2012

Programs: 2Dyn_Granular, 3Dyn_Granular

Parallel program systems for the solution
of two-dimensional and three-dimensional
dynamic problems of the Cosserat
elasticity theory

Certificates of state registration of computer programs
no. 2012614823 and 2012614824 from 30.05.2012

Programs: 2Dyn_Cosserat, 3Dyn_Cosserat

Program systems 2Dyn_Granular, 3Dyn_Granular are intended for numerical realization of the universal
mathematical model, describing small strains of elastic, plastic and granular materials.
Program systems 2Dyn_Cosserat, 3Dyn_Cosserat allows to solve numerically dynamic problems of
the moment elasticity, taking into account rotations of the particles of microstructure of a material.
On interblock boundaries of blocks the conditions of continuity of the velocity vectors and the stress
vectors are placed. On external boundaries of computational domain the main types of dissipative
boundary conditions in terms of velocities, stresses or mixed boundary conditions, or symmetry
conditions, ensuring mathematical correctness of a problem, can be specified.
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Dynamics of granular and porous materials Parallel computational algorithm

Distribution of computational load

Two-dimensional case

Decomposition of a medium body, consisting of
2 blocks, between 7 processes

Decomposition of a medium body, consisting of
12 blocks, between 4 processes

Three-dimensional case

Decomposition of a medium body, consisting of
24 blocks, between 24 processes
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Dynamics of granular and porous materials Results of computations

Lamb’s problem for a medium with rigid inclusion

Distribution of computational domain between processors

Seismogram of the displacement u1 Level surfaces of the stress σ11

The elastic medium body consists of two layers. Elasticity parameters of a compact ground are defined
in upper layer and in part of lower layer, parameters of a strong rock are defined in remaining part of
lower layer. 4 blocks, 68 processors: 64 – in a compact ground, 4 – in a strong rock, grid dimension
for each processor is 50× 50× 50 meshes.
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Dynamics of granular and porous materials Results of computations

Natural resonance of the Cosserat medium

Seismograms of incident waves:
impulsive loading (left) and
periodic loading (right)

σ11 = −p∗1δ(x) sin(2πνt)

synthetic polyurethane

64 processors

m12 = −q∗2δ(x) sin(2πνt)

Periodic loading:
level surfaces of angular velocity ω2

for nonresonance frequency (left)
and resonance frequency (right)

ν = 1.5 ν∗ ν = ν∗ = 1/T
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Dynamics of granular and porous materials Longitudinal shock waves

Exact solutions: Low porosity

O θ0 θf
− ε1

pθ

pf

−σ1

α1

α2

α3

In a low-porous material
with relatively high yield point,
where θ0 6 θf ≡ τs/µa,
pore collapse under the action of
compressive stresses takes place
at the stage of elastic
deformation, and plasticity shows
itself only after compaction of
a medium.

On a shock wave, that travels with a velocity c in the direction of x1 axis, in a general case
the dynamic and kinematic equations and their corollary are fulfilled:

ρ c (v+1 − v
−
1 ) + σ+

1 − σ
−
1 = 0, c (ε+1 − ε

−
1 ) + v+1 − v

−
1 = 0, ρ c2 =

σ+
1 − σ

−
1

ε+1 − ε
−
1

Here the values with a superscript “+” are related with the state behind the wave front, and
the values with a superscript “–” are related with the state ahead the wave front.

c0p =

√
ka + 4µa/3

ρ
, cθ = cp

√
p0

p0 + kb θ0

(
cp =

√
ka + kb + 4µa/3

ρ

)
, cf =

√
ka + kb

ρ
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Dynamics of granular and porous materials Longitudinal shock waves

Exact solutions: High porosity

O θf θ0
− ε1

pf

p′θ

p′0

−σ1

β1

β2

β3

In a material with low yield
point and high porosity,
where θ0 > θf ≡ τs/µa,
plasticity sets in before
the state of compaction.
This scenario corresponds to
the uniaxial diagram, which
is shown in the figure.

In this case the characteristic wave velocities are velocities of elastic and plastic waves:

c0p =

√
ka + 4µa/3

ρ
, c0f =

√
ka

ρ

the velocity of wave of plastic compaction and the velocity of solitary elastic-plastic wave of
compaction (for very high pressure):

c′θ = cf

√√√√ p0 − p′f
p0 − p′f + kb (θ0 − τs/µa)

, c′0 = cf

√
p0

p0 + kb θ0 − 4 τs/3
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Dynamics of granular and porous materials Longitudinal shock waves

Tree of the solutions

θ0 6 θf θ0 > θf

p0 > pθ p0 6 pθ p0 6 p′f p0 > p′f

c0pp0 > pf p0 6 pf

c0, cf cθ

p0 6 p′0 p0 > p′0

p0 6 p′θ p0 > p′θ c′0

c0p, c
0
f c0p, c

′
θ

The complete tree of the solutions is shown in this figure as a graph with the vertices
specifying velocities of one or two waves depending on the solution variant.

pθ = (ka + 4µa/3) θ0, pf = 4 τs/3 + (ka + kb) τs/µa − kb θ0

p′f = (4/3 + ka/µa) τs, p′θ = ka θ0 + 4 τs/3, p′0 =

(
kb +

4

3
µa

)
3 kb θ0 − 4 τs

3 kb − 4µa
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Dynamics of granular and porous materials Numerical results

Comparison of the solutions

Graphs of normal stress in the case of low porosity (θf = 0.15 %).

The elastic wave of compaction (i. e., the shock-wave transition of pores into the collapse state)
and usual plastic wave as in a compacted material without pores are realized in this case.

θ0 = 0.1 %, p0 = 5 τs θ0 = 1 %, p0 = 25 τs
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Dynamics of granular and porous materials Numerical results

Comparison of the solutions

Graphs of normal stress in the case of high porosity (θf = 0.15 %).

In this case the usual elastic precursor in a porous material and plastic wave of compaction
(i. e., the shock-wave transition of pores into the collapse state) are realized.

θ0 = 5 %, p0 = 75 τs θ0 = 5 %, p0 = 125 τs
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Dynamics of granular and porous materials Numerical results

Constant load at inner boundary of a rockhole

Distribution of computational load
between nodes of a cluster

2D decomposition, 25 processors

Aluminum foam with a porosity of 1%

Phenomenological parameters:
ρ = 2673 kg/m3, τs = 0.0378MPa
ka = 71.58MPa, µa = 24.54MPa
kb = 4.256MPa, µb = 1.459MPa

The interior radius of pipe is 10 cm,
its outer radius is 1m Level curves of plastic dissipation
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Dynamics of granular and porous materials Numerical results

Constant load at inner boundary of a rockhole

Fields of volumetric strain θ(ε)

25 processors,
250 x 250 nodes
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Dynamics of granular and porous materials Numerical results

Concentrated impulsive load (Lamb problem)

Symmetric case

Fields of radial stress

Nonsymmetric case

50 processors, 500 x 500 nodes
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Dynamics of granular and porous materials Numerical results

Periodic localized load

Waves, caused by periodic localized load at the inner boundary

Symmetric case

Level curves of volumetric strain θ(ε)

Nonsymmetric case

40 processors, 400 x 400 nodes
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A blocky medium with weakened interlayers: Blocky structure of rocks

A blocky model of geological media

The faults and/or filed fractures in the reservoir introduce a network, communicate hydraulically
between each other locally and globally, and provide overall conductivity (permeability) of the reservoir,
and the matrix provides overall storage capacity (porosity).

Dual-porosity reservoir model

Fractured reservoir Sugar cube representation

Warren J.E., Root P.J. The behavior of naturally fractured reservoirs. SPE J. 1963.
V. 3. P. 245–255.

Sadovskii M.A. Natural lumpiness of a rock. Dokl. Akad. Nauk SSSR. 1979.
V. 247, No. 4. P. 829–831.
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A blocky medium with weakened interlayers: Elastic interlayers

Equations of elastic blocks and elastic interlayers

Scheme of a blocky medium

A motion of each block is defined
by the system of equations of
a homogeneous isotropic elastic medium:

ρ v̇1 = σ11,1 + σ12,2

ρ v̇2 = σ12,1 + σ22,2

σ̇11 = ρ c21
(
v1,1 + v2,2

)
− 2 ρ c22 v2,2

σ̇22 = ρ c21
(
v1,1 + v2,2

)
− 2 ρ c22 v1,1

σ̇12 = ρ c22
(
v2,1 + v1,2

)
Elastic interlayer between the horizontally located nearby blocks is described by the system of equations:

ρ
′ v̇

+
1 + v̇−1

2
=
σ+
11 − σ

−
11

δ1
,

σ̇+
11 + σ̇−11

2
= ρ
′
c
′
1
2 v+1 − v

−
1

δ1

ρ
′ v̇

+
2 + v̇−2

2
=
σ+
12 − σ

−
12

δ1
,

σ̇+
12 + σ̇−12

2
= ρ
′
c
′
2
2 v+2 − v

−
2

δ1

Elastic interlayer between the vertically located nearby blocks is modeled using similar system:

ρ
′ v̇

+
2 + v̇−2

2
=
σ+
22 − σ

−
22

δ2
,

σ̇+
22 + σ̇−22

2
= ρ
′
c
′
1
2 v+2 − v

−
2

δ2

ρ
′ v̇

+
1 + v̇−1

2
=
σ+
12 − σ

−
12

δ2
,

σ̇+
12 + σ̇−12

2
= ρ
′
c
′
2
2 v+1 − v

−
1

δ2
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A blocky medium with weakened interlayers: Accounting for plasticity

Elastic-plastic interlayers

To take into account the plasticity, constitutive equations of the vertical elastic interlayer are replaced
by the variational inequality:

(δσ
+
11 + δσ

−
11) ε̇

p
11 + (δσ

+
12 + δσ

−
12) ε̇

p
12 6 0

δσ±jk = σ̃±jk − σ
±
jk – variations of stresses

ε̇
p
11 =

v+1 − v
−
1

δ1
−
σ̇+
11 + σ̇−11
2 ρ′c′ 21

, ε̇
p
12 =

v+2 − v
−
2

δ1
−
σ̇+
12 + σ̇−12
2 ρ′c′ 22

– plastic strain rates

The actual stresses σ±jk and variable stresses σ̃±jk are subjected to the constraint in the form:

f

(
σ̃+
11 + σ̃−11

2
,
σ̃+
12 + σ̃−12

2

)
6 τ(χ)

τ – material yield point of interlayers, χ – material parameter (or set of parameters) of hardening
f(σn, στ ) – equivalent stress function, in which arguments are normal and tangential stresses

The simplest form of the constraint for a microfractured medium is as follows:
|στ | 6 τs − ks σn (τs and ks – material parameters)

Constitutive equations of the horizontal elastic-plastic interlayer are formulated in a similar way
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A blocky medium with weakened interlayers: Accounting for viscosity

Poynting–Thomson’s viscoelastic model
To describe the viscous dissipative effects in the interlayers under shear stresses,
the Poynting–Thomson model of a viscoelastic medium is used.

a0

a1 η

Poynting–Thomson’s rheological scheme

Hooke’s law for elastic element: ε′12 = a0 (σ+
12 + σ−12)/2, ε′′12 = a1s12

Newton’s law for viscous element: η ε̇′′12 = (σ+
12 + σ−12)/2− s12 Total strain: ε12 = ε′12 + ε′′12

Constitutive equations of the interlayer:

a0
σ̇+
12 + σ̇−12

2
+ a1 ṡ12 =

v+2 − v
−
2

δ1
,

σ+
12 + σ−12

2
= s12 + η a1 ṡ12

Energy balance equation:

σ+
12 + σ−12

2

v+2 − v
−
2

δ1
= Ẇ + η a

2
1 ṡ

2
12, 2W = a0

(σ+
12 + σ−12)2

4
+ a1 s

2
12

according to which the power of internal stresses in the interlayer is the sum of
the reversible elastic strain power and the power of the viscous energy dissipation
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A blocky medium with weakened interlayers: Accounting for porosity

Model of porous interlayers

The longitudinal deformation of the interlayers is described on the basis of a complicated version
of the porous elastic model, which takes into account the strength increasing during the collapse of pores.

b0

b1

Rheological scheme of a porous interlayer

Total strain: ε11 = σ′11/b1 + θ1 − θ0
σ′11 6 0 – stress in a rigid contact, θ0 > 0 and θ1 > 0 – initial and current porosity values

Governing relations of a rigid contact: (σ̃11 − σ′11) θ1 6 0, σ̃11, σ
′
11 6 0

σ′11 = b1 π(θ0 + ε11), π(θ) = min(θ, 0) – projection onto the non-positive semi-axis

Constitutive equations of the interlayer including the equation for porosity:

ε̇11 =
v+1 − v

−
1

δ1
,

σ+
11 + σ−11

2
= b0 ε11 + b1 π(θ0 + ε11), θ1 = θ0 + ε11 − π(θ0 + ε11)

The energy balance equation:
σ+
11 + σ−11

2
ε̇11 = Ẇ , 2W = b0 ε

2
11 + b1 π

2
(θ0 + ε11)
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A blocky medium with weakened interlayers: Accounting for fluid-saturation

Modified Biot’s model
Under numerical modeling of the wave motion in a blocky medium containing fluid-saturated porous
interlayers, a version of the model is applied based on Biot’s approach.

Kinetic energy related to the initial unit of a volume of the horizontal interlayers:

2T = ρs
(v+1 + v−1 )2

4
+ ρa

(v+1 + v−1
2

− w1

)2
+ (ρs + ρf )

(v+2 + v−2 )2

4
+ ρf w

2
1

ρs, ρf – partial densities of a solid skeleton and a liquid phase in interlayers at the initial moment of time
ρa – density of additional mass used to take into account the mutual influence of fluid and skeleton
in the case of relative motion, w1 – absolute velocity of the fluid motion

Equations describing skeleton motion in the direction of longitudinal axis x1:

(ρs + ρa)
v̇+1 + v̇−1

2
− ρa ẇ1 =

σ+
12 − σ

−
12

δ2

a0
σ̇+
12 + σ̇−12

2
+ a1 ṡ12 =

v+1 − v
−
1

δ2
,

σ+
12 + σ−12

2
= s12 + η a1 ṡ12

Equations describing joint motion of the solid and liquid phase in the direction of transverse axis x2:

(ρs+ρf )
v̇+2 + v̇−2

2
=
σ+
22 − σ

−
22

δ2
, ε̇22 =

v+2 − v
−
2

δ2
,

σ̇+
22 + σ̇−22

2
= b0 ε̇22 + b1 π̇(θ0 + ε22) + bs w1,1

Equations describing the fluid motion along the interlayer:

(ρf + ρa) ẇ1 − ρa
v̇+1 + v̇−1

2
= s11,1, ṡ11 = bf w1,1 + bs ε̇22

s11 = −p θ – normal stress in the liquid phase, p – value of the pore pressure
θ – momentary porosity value, bs and bf – elastic moduli characterizing the interaction
in the system “solid skeleton–fluid”
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A blocky medium with weakened interlayers: Accounting for fluid-saturation

Kirchhoff’s law for nodes

To solve the systems numerically, the computational algorithm is developed.
The Godunov gap decay scheme is applied at the stage of approximation
of the equations for velocity w1 and stress s11 in a fluid.

w−1 θ
−
1 δ2 w+

1 θ
+
1 δ2

w+
2 θ

+
2 δ1

w−2 θ
−
2 δ1

Scheme of flows interaction

At junction zones of the horizontal and vertical
interlayers, the internal boundary conditions are set.

They result from Kirchhoff’s law for the fluid flow:

w
+
1 θ

+
1 δ2 + w

+
2 θ

+
2 δ1 = w

−
1 θ
−
1 δ2 + w

−
2 θ
−
2 δ1

and the dynamic equations:

s
±
11 = −p θ±1 , s

±
22 = −p θ±2

considering the pressure equality at a junction.

θ±1 and θ±2 – porosities in the horizontal
and vertical interlayers

In this formulation of the boundary conditions at
the junctions, the power balance equation is fulfilled:

s
+
11 w

+
1 δ2 +s

+
22 w

+
2 δ1−s

−
11 w

−
1 δ2−s−22 w

−
2 δ1 = 0

which guaranteed the thermodynamic consistency
of equations in the inner layers and blocks.
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A blocky medium with weakened interlayers: Cracking of interlayers

Model of separation cracks

Rheological scheme of contact interaction of crack edges

Conditions of contact interaction of the crack edges are formulated as a variational inequality

δσ11

(
1

ρ′c′21
σ11 − ε11

)
> 0, ε̇11 =

v+1 − v
−
1

δ1

The algorithm of numerical implementation in a mesh of a grid is based on the equations

ε̂11 = ε11 +
v+1 − v

−
1

δ1
τ, z1v

+
1 + σ

+
11 = R

+
1 , z1v

−
1 − σ

−
11 = R

−
1

and the closing equation σ̂11 + σ11 = σ+
11 + σ−11, guaranteeing the absence of artificial dissipation

of energy, which gives the procedure of stress correction

σ̂11 =
1

κ
π−

(
ε11 +

R+
1 − R

−
1 − σ11

z1δ1
τ

)
, κ =

1

ρ′c′21
+

τ

ρ c1δ1
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A blocky medium with weakened interlayers: Parallel computational algorithms

Two-cyclic splitting

We developed parallel computational algorithm for supercomputers of the cluster architecture based on
a two-cyclic method of splitting, which has high accuracy and permits the efficient parallelization of
computations.

Governing equations in blocks and interlayers are represented in the form of symbolic evolution equation:

U̇ = A1(U) + A2(U)

A1 and A2 – nonlinear differential-difference operators, simulating 1D motion of a blocky medium
in the direction of the coordinate axes x1 and x2, U – vector–function of unknown quantities
which includes the projection of the velocity vector and the stress tensor in blocks and interlayers

The method of splitting on the time interval (t0, t0 + ∆t) includes four steps: the step of solving
1D equation in the x1 direction on the interval (t0, t0 + ∆t/2), a similar step of solving the equation
in the x2 direction, the step of recomputation in the x2 direction on the interval (t0 + ∆t/2, t0 + ∆t)
and the step of recomputation in the x1 direction on the same interval:

U̇(1) = A1(U(1)), U(1)(t0) = U(t0)

U̇(2) = A2(U(2)), U(2)(t0) = U(1)(t0 + ∆t/2)

U̇(3) = A2(U(3)), U(3)(t0 + ∆t/2) = U(2)(t0 + ∆t/2)

U̇(4) = A1(U(4)), U(4)(t0 + ∆t/2) = U(3)(t0 + ∆t)

The solution at the time instant t0 + ∆t equals to U(t0 + ∆t) = U(4)(t0 + ∆t)
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A blocky medium with weakened interlayers: Parallel computational algorithms

Efficiency of parallelization

Computational algorithm is implemented as the parallel program for analysis of the waves propagation
processes in blocky media under external dynamic loads. The parallelization is performed on the basis of
domain decomposition – each processor of a cluster expects a separate chain of blocks including the
boundary interlayers in the horizontal direction. The programming language is Fortran, and the message
passing interface (MPI) library is used.

O 10 20 30 40 50 N

2

4

6

8

10

12

14

T [min]

Dependence of the runtime T on the linear dimension N of a grid in blocks
(circle points – actual computational time, solid line – semi-theoretical computational time)
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A blocky medium with weakened interlayers: Results of computations

Instant rotation of the central block in the rock mass

δ = 0.1mm δ = 1mm δ = 5mm

Level curves of the tangential stress depending on the thickness of interlayers

The case of porous interlayers
Rock massif consists of 100 x 100 blocks, size of each block is 50 mm x 50 mm

Sadovskii V.M., Sadovskaya O.V. Modeling of elastic waves in a blocky medium based on
equations of the Cosserat continuum. Wave Motion. 2015. V. 52. P. 138–150.
DOI: 10.1016/j.wavemoti.2014.09.008
http://www.sciencedirect.com/science/article/pii/S0165212514001358

Sadovskii V.M., Sadovskaya O.V., Lukyanov A.A. Modeling of wave processes in blocky media
with porous and fluid-saturated interlayers. Journal of Computational Physics. 2017.
V. 345. P. 834–855. DOI: 10.1016/j.jcp.2017.06.001
http://www.sciencedirect.com/science/article/pii/S0021999117304461
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A blocky medium with weakened interlayers: Results of computations

Instant rotation of the central block in the rock mass
δ = 0.1mm δ = 1mm δ = 5mm

The case of elastic interlayers

Level curves of the tangential stress depending on the thickness of interlayers

The case of elastic-plastic interlayers
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A blocky medium with weakened interlayers: Results of computations

Instant rotation of the central block in the rock mass
δ = 0.1mm δ = 1mm δ = 5mm

The case of porous interlayers: intensive load (with pore collapse)

Level curves of the fluid circulation around blocks depending on the thickness of interlayers

The case of porous interlayers: small load (without pore collapse)
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A blocky medium with weakened interlayers: Results of computations

Crack propagation in a blocky medium

The action of Π-shaped pulse load on a part of the upper boundary of a blocky massif

Level curves of the normal stress σ22
Formation and propagation of the system

of interblock cracks

The action of Π-shaped smoothed pulse load on a part of the upper boundary of a blocky massif

100 layers, 200 blocks in each of them

100 nodes, 1D decomposition of computational domain
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A blocky medium as Cosserat continuum: Equations of elasticity

For plane strain, the equations of the Cosserat elastic continuum:

ρ0 v̇1 = σ11,1 + σ12,2, ρ0v̇2 = σ21,1 + σ22,2

J0 ω̇3 = µ31,1 + µ32,2 + σ21 − σ12

a1 σ̇11 − b1 σ̇22 = v1,1, a1 σ̇22 − b1 σ̇11 = v2,2

a2 σ̇21 − b2 σ̇12 = v2,1 − ω3

a2 σ̇12 − b2 σ̇21 = v1,2 + ω3

µ̇31 = α2 ω3,1, µ̇32 = α2 ω3,2

written in Cartesian coordinates relative to the linear velocities v1, v2, angular velocity ω3,
stresses σjk and couple stresses µjk can be represented in the matrix form:

A
∂U

∂t
= B1 ∂U

∂x1
+B2 ∂U

∂x2
+QU

U =
(
v1, v2, ω3, σ11, σ22, σ21, σ12, µ31, µ32

)
with symmetric matrix–coefficients A, B1, B2 and antisymmetric matrix Q.

This system belongs to the class of symmetric t-hyperbolic systems by Friedrichs
and systems of thermodynamically consistent conservation laws by Godunov.
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A blocky medium as Cosserat continuum: Accounting for plasticity

Elastic-plastic Cosserat continuum

It is possible to construct a model of Cosserat elastoplastic continuum on the basis of the system
of equations of the theory of elasticity. Such a model is formulated as a variation inequality

(Ũ − U) ·
(
A
∂U

∂t
−B1 ∂U

∂x1
−B2 ∂U

∂x2
−QU

)
> 0, Ũ , U ∈ F

Here F is the set of admissible variations of the vector U , Ũ is an arbitrary element of F .

This variational inequality is a formulation of the Mises principle of maximum power of
plastic dissipation. The boundary of F in the space of stress and couple stress tensors is
the yield surface of material, which is equivalent to the system of constitutive equations
of plasticity in the form of associative flow role.

Sadovskii V.M. Discontinuous Solutions in Dynamic Elastic–Plastic Problems.
Physics and Mathematics Literature Publishing Company, Moscow, 1997. 208 p.
(in Russian)

Sadovskaya O., Sadovskii V. Mathematical Modeling in Mechanics
of Granular Materials. Ser.: Advanced Structured Materials, Vol. 21.
Springer, Heidelberg – New York – Dordrecht – London, 2012. 390 p.
DOI: 10.1007/978-3-642-29053-4

http://link.springer.com/book/10.1007/978-3-642-29053-4
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A blocky medium as Cosserat continuum: Yield criterion

Plasticity in interlayers
Since the behavior of continuum is completely determined by the deformation properties
of the weakened interlayers of blocky structure, the yield criterion is used in the form

|σ21| 6 τ0 − κτ σ11, |σ12| 6 τ0 − κτ σ22
|µ31| 6 µ0 − κµ σ11, |µ32| 6 µ0 − κµ σ22

It limits the tangential stresses, which characterize shifts along the interlayers, and couple
stresses, the attainment of which limit values lead to an irreversible change in the curvature.

σ12

σ21

σ12

σ21 µ31 µ31

Tangential stresses caused by rotations of the blocks

Scheme of couple-stressed interactions
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Comparison of the numerical results

U-shaped pulse loading

Level curves of tangential stress σ12 Level curves of normal stress σ22
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Comparison of the numerical results

U-shaped pulse loading

Configuration of plastic zones Configuration of fracture zones
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Comparison of the numerical results

Λ-shaped pulse loading

Level curves of tangential stress σ12 Level curves of normal stress σ22
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Comparison of the numerical results

Λ-shaped pulse loading

Configuration of plastic zones Configuration of fracture zones
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Comparison of the numerical results

U-shaped pulse without fracture

Level curves of tangential stress σ12 Level curves of normal stress σ22
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Comparison of the numerical results

U-shaped pulse without fracture

Configuration of plastic zones
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Comparison of the numerical results

U-shaped pulse loading: Cosserat model

Level curves of tangential stress σ12 Level curves of normal stress σ22
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Comparison of the numerical results

U-shaped pulse loading: Cosserat model

Level curves of plastic dissipative energy
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Comparison of the numerical results

U-shaped pulse loading: Cosserat model

Level curves of couple stress µ31 Level curves of couple stress µ32
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Comparison of the numerical results

U-shaped pulse loading: Cosserat model

Level curves of angular velocity ω3 Level curves of rotation angle ϕ3 (ϕ̇3 = ω3)
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Conclusions

Conclusions

By means of a generalized rheological method we constructed the constitutive equations
of granular and porous media, describing the nonlinear effect of strength increasing
in a material after the collapse of pores.

We worked out parallel computational algorithms and programs for numerical
implementation of the dynamic models for structurally inhomogeneous media
on supercomputers of cluster architecture.

We carried out a series of numerical experiments on the elastic-plastic waves propagation
in granular, blocky and porous geomaterials as well as on the resonance excitation in
an elastic Cosserat medium at the natural frequency of the rotational motion of particles.

The reported study was funded by the Russian Foundation for Basic Research,
Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science
to the research project No. 18-41-242001

Many thanks for your attention and for your interest !!!
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