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The finite element method
for convection-diffusion convection-dominated
problems

Karepova E.D., Shaidurov V.V.

Introduction

The work is devoted to numerical methods for solving singularly perturbed
problems for the convection-diffusion equation with the highest derivatives
multiplied by a small parameter. In this case the order of the non-perturbed
(singular) equation is one less than of the original (perturbed) equation.
Therefore the boundary conditions of the perturbed problem are not all
fulfilled for the singular one. Some of these conditions are superfluous that
leads to the fast variation of the solution in a small vicinity of corresponding
parts of a boundary. As a result, the standard finite difference and finite
element methods on a uniform grid either are unstable or give poor accuracy
for a small parameter of diffusion.

Some data on the asymptotic analysis of the influence of a small param-
eters in differential equations go back to L.Euler. The modern theoretical
and practical investigations have their origin in A.N.Tikhonov’s works of
1940s ([48], [49], [50]). The systematic development of methods for solving
singularly perturbed problems started in the late 1960s.

In studies of the properties of a differential problem, the methods of the
asymptotic expansion with respect to a small parameter were applied (see
[14], [33], [16], [42], [17], [37], [41], [43], [87], [18] and the reviews in them)
such as the method of the inner and outer expansions ([14] — 1967), the
method of M.I.Vishik and L.A.Lusternick ([19] — 1952 and also [44], [19],
[52]), and the method of boundary functions being the generalization of the
latter one ([15] and [16] - 1960s, and also [11], [17], [13], [18]).
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The use of the standard finite difference and finite element methods for
solving singularly perturbed problems failed because of poor accuracy and
instability of the discrete analogues. Detailed investigations in this field can
be found in [109], [73], [101], [62], [23], [4], as well as in the monograph
[117] where the present state of numerical methods for solving singularly
perturbed problems is covered in considerable detail.

For the problems considered here the constants in the estimates of the
convergence of the classical methods, as a rule, depend on a small parameter
and increase indefinitely when the parameter approaches zero [4]. Therefore,
these methods can not be applied as mentioned above.

There are several approaches to overcome these difficulties. By conven-
tion they can be divided into two groups. The first group is made up of
various fitted methods in which the coefficients of a difference scheme in
the finite difference method or the parameters of a bilinear form and basis
functions in the finite element method are chosen with the use of a-priori in-
formation on the behavior of the solution of a differential problem (see, e.g.,
[23]). The second group consists of standard methods on non-uniform grids
which are a-priori given or a-posteriori adapted in the process of numerical
integration (see, e.g., [5], [57], [36]).

The first attempts to achieve higher-order accuracy are connected with
the use of the upwind scheme. The basic idea of this method is to apply an
appropriate approximation of the convective term (by the directed differ-
ences) and to add artificial viscosity along the streamline direction. It has
been proved that this approach leads to the second order convergence for
moderate values of the diffusion parameter and to the convergence of only
the first order when the value of the parameter is comparable with or less
than a mesh size ([102], [127], [124], [58], [69]).

The construction of the methods uniformly convergent with respect to a
small parameter is of great importance in numerically solving the problems
with a boundary layer. The exponentially fitted methods satisfy this prop-
erty. They are constructed using the information on a form of the boundary
layer component of a solution ([25], [26], [24], [59], [78], [79], [80]). Another
way to construct uniformly convergent difference schemes is to use the an-
alytical solution of an equation with constant coefficients. This approach
proposed by D.N.Allen and R.V.Southwell [59] is based on the proximity
of the original problem to the approximating one with piecewise constant
coefficients and gives a discrete problem similar to the exponentially fitted
scheme of A.M.II'in [25]. In the context of this approach, mention should
be made of the method of integral identities with special weight functions
[38]. This method is constructed in much the same way as the truncated
difference schemes of A.A.Samarskii [45].
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One more way to achieve higher-order accuracy of the finite difference
method outside a boundary layer is connected with increasing the number
of nodes in a stencil ([22], [82], [105]). This complicates the stability analysis
as well as the two- and three-dimensional generalizations.

As we noted above, the alternative way to construct uniformly conver-
gent methods is to use special grids. First of all, these are the grids proposed
by N.S.Bakhvalov [5]. They are logarithmically refined inside the boundary
layer. The construction of these grids is based on the estimates of the deriva-
tives of a solution or on the fact that the difference of the values of a solution
at any two neighboring nodes of a grid is uniformly bounded with respect to
the parameter ([35], [36]). As a rule, this way leads to a nonlinear algebraic
equation for some parameters of this function. Therefore various explicit
approximations of logarithmic function are used to construct the Bakhvalov
grids ([129], [130], [131], [6], [7], [85], [86]).

In [54] and [123] G.IShishkin proved that for the problems with a
parabolic boundary layer it is impossible to construct a fitted difference
scheme with a compact stencil that converges uniformly with respect to
a small parameter. Besides, in [54] the nonuniform grid with a piecewise
constant mesh size decreasing in a boundary layer was proposed. In this
case the upwind scheme is convergent with order N~!In N where N is the
number of nodes of the grid. For singularly perturbed problems, the general
concept of the proof of the uniform convergence of the classical difference
schemes on these grids is presented in the monograph [57] by G.I.Shishkin.
In [55], [56], [89], [90], [91], [81] this approach is applied to a wide range
of singularly perturbed problems in the finite difference framework and in
[113], [119], [125], [111] the Shishkin grids are discussed in the context of
finite element method.

All these approaches applied to the finite element method together with
the specific finite element techniques give a number of tools for numerical
solving singularly perturbed problems.

The upwind scheme in the finite element method has several modifica-
tions. For example, in the Petrov-Galerkin method [62] the standard piece-
wise linear trial functions but the piecewise quadratic test functions are
used ([74], [92], [93], [94]). K.Morton proposed to construct test functions
which yield a simmetric (or nearly simmetric) discrete problem because in
this case the Ritz-Galerkin technique is optimal with respect to the energy
norm [101]. For one-dimensional problems this method works well but it is
difficult to generalize it to higher-dimensional problems ([108], [109], [110]).
Mention should be made of the method proposed by M.Tabata in [126]
where the convective term is approximated on the upwind elements only

([71], [60], [61]).
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T.Hughes and A.Brooks proposed the method using additional viscos-
ity in the streamline direction ([72], [95]). Instead of the standard bilinear
form in the Petrov-Galerkin method they considered some its approximation
with an additional term introducing additional viscosity in the streamline
direction. As a result, the pointwise convergence of the second order can be
achieved on the grids oriented in the streamline direction ([107], [98], [99],
[100], [60], [132], [133], [134]). This approach is equivalent to the use of the
Galerkin method on the special space being the orthogonal product of the
space of piecewise linear functions and that of ”bubble functions” [70].

We also mention the method of the additive selection of boundary layer
functions ([3], [1], [2]). The basic idea of this method is to add one or two
exponential functions with a non-local support, that provides a successful
approximation of the boundary layer component, to the standard piecewise
linear basic.

In the context of adding artificial viscosity, the least squares method
can be applied ([96], [97], [83], [84]). A drawback of this method is that
when using piecewise polynomial elements, the assumption that the trial
and test functions belong to Sobolev’s space W3 (2) requires the use of finite
elements of C''(§2); but the construction of these elements on an arbitrary
triangulation is not easy. Besides, the number of nonzero entries of the
stiffness matrix increases.

The application of exponential fitting to the finite element method is
represented by two different approaches. In the first approach special piece-
wise exponential functions are used ([112], [115], [116]). They approximate
the smooth component of a solution somewhat worse than piecewise linear
ones but give a considerably better approximation of the boundary layer
component. This enables to achieve higher-order accuracy in the Galerkin
method. We also mention the non-conforming finite element method [118]
where discontinuous exponential finite elements are used.

Another approach that extends difference exponential fitting was pro-
posed for the one-dimensional convection-diffusion equation in [121]. The
further development of this method is the subject of this work. The basic
idea of this approach is to use the standard piecewise linear finite elements
on a uniform grid, applying special fitted quadrature rules to approximate
the boundary layer component. As a result, the approximate solution con-
verges to the piecewise linear interpolant of the exact one both in the mean
square and in the uniform norms.

Recently in the finite difference and finite element methods, adaptive
grids are used. They are constructed using a-posteriori information on the
approximate solution obtained on a uniform or coarse grid. To estimate the
quality of a numerical solution, special functionals named estimators are



The finite element method for convection-diffusion 7

applied. A number of estimators is proposed in the literature ([63], [64],
[67], [65], [75], [66], [76], [77], [128], [88]).

The present work is devoted to the construction and justification of
exponentially fitted schemes in the finite element method for the Dirichlet
problem for the convection-dominated convection-diffusion equation. Now
we outline the basic idea of this approach.

Let {2 be a one- or two-dimensional domain with a piecewise smooth
boundary I'. We consider the Dirichlet problem

Lu=—cAu+ %(b(m)u) =f in {2, (1)
u=0 on I’ (2)

where ¢ < 1 is a positive parameter. The weak formulation of (1) — (2) is
given as follows: find u € H}(£2) such that

a(u,v) = (f,v) Ve H; () ®3)
Here a(-,-): H}(2) x HE(£2) — R is the bilinear form determined by

a(u,v) :/ (e VuVv — bu%) ds?
7

and (-, -) is the inner product in L2(2). We represent the solution of (1)—(2)
as
u=v+p (4)

where v is the smooth component of the solution which provides a good
approximation of u outside the boundary layer and p is the boundary layer
component which varies fast in a narrow region near some parts of the
boundary.

We choose a finite-dimensional space of test functions
T, € Hi(2) with the basis {goj}jj\il. We consider the discrete problem
corresponding to (3): find u € Ty, such that

a(u, o) = i) Vol e Ty, (5)

Here a"(-,-) : Ty, x T, — R is a bilinear form approximating a(-,-) and
f" . T), — R is the approximation of the inner product (f,-). In the usual
investigation of (5), the following expansion of the error is used:

a"(wh —ul wh) = a(u wh) — a(ul, W) + alul, wh)
— a(u’,w") + a(u, w") — a(u, w") (6)
= (") = f(w") + (a = a") (', w") + a(u -l w").
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Here u! is the interpolant of the solution in 7},. In this case, the estimate of
the last term in (6) increases indefinitely as € decreases because the solution
contains the boundary layer component p. The main point of the presented
approach ([121]) is to construct the special approximation of a” in order to
reduce the error a(p, w") — a(p?,w") in the estimate

a"(u" — o w") = (1 (w") = fw") + (a(u,w") — " (u",w"))
(f(w") = f(w") + a(v,w") = a" (", w"))
+ (a(p,w") —a"(p",w")).

The further development of this approach is as follows. Firstly, for the ap-
proximation of the boundary layer component we apply the quadrature rules
of higher accuracy. Secondly, we use the special approximation of the right-
hand side to eliminate the main term of the error of the quadrature rule on
the smooth component.

In the first chapter this approach is applied to the one-dime-sional
convection-diffusion equation with the highest derivative multiplied by a
small parameter. First we construct the discrete problem based on the linear
quadrature rule for the approximation of the convection term and use the
special quadrature rule for the approximation of the right-hand side. Next
we apply the nonlinear quadrature rule. For the obtained grid problems the
second order convergence in the uniform norm is proved for small values of
E.

=

w
w

The extension to the two-dimensional case in the second chapter com-
plicates the behavior of a solution. Along with a regular boundary layer
which is locally described by an ordinary differential equation, a parabolic
boundary layer can arise near some parts of the boundary. It satisfies a
parabolic differential equation.

In Section 2.1 the general characteristic of the differential problem
is given. The comparison principle is proved for the family of differential
equations with the boundary conditions of two types. The weak formulation
of the problem is presented. In Section 2.2 the problem free of a parabolic
boundary layer of order 0 is considered. Some estimates of the solution and
its derivatives are obtained by the comparison principle. On a uniform grid
the discrete problem based on the Galerkin method with piecewise linear
elements is constructed using the fitted quadrature rules. The first order of
convergence is proved.

In Section 2.3 we investigate the problem with regular and parabolic
boundary layers. In this case fitting methods fail ([54]). Therefore, together
with the fitted quadrature rules for the approximation of the regular bound-
ary layer, we use a special grid refined in the parabolic boundary layer. This
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grid is similar to that of Bakhvalov type but in the construction of the grid
the generating function is not used. Moreover, the distribution of nodes is
given by the one-parameter recurrent formula. The stability and conver-
gence results for this problem are obtained on this grid. In this case the first
order convergence is also proved.

In the third chapter the numerical results are discussed.

Section 3.1 is devoted to the numerical experiments in the one-dimen-
sional case. The results demonstrate high accuracy and the advantage of the
proposed method over well-known ones. Further, some modifications of the
Gauss-Seidel method for solving the two-dimensional discrete problem are
considered. The calculations were carried out on the grids of three types. In
the two-dimensional problem the exact solution was presented in the form
of infinite series. All numerical results on stability and convergence are in
close agreement with the theoretical ones.

1 One-dimensional convection—diffusion problem

In this chapter the boundary value problem for the ordinary differential
convection-dominated convection-diffusion equation is considered. In spite
of its simplicity, this problem has the characteristic feature of the convection-
dominated problems, namely, a boundary layer. As a result, most of the
classical finite difference and finite element methods fail. Thus, we have a
simple object to demonstrate in detail all characteristic properties of the
problem as well as of the numerical methods proposed.

1.1 The differential problem and its properties

1.1.1 Boundary Layer
Consider the ordinary differential equation with the highest derivative
multiplied by a small parameter

Lu = —eu" + (b(z)u) = f(z ) on (0,1), (1.1)
1.2

0<By<blz)<B; on [0,1]
satisfying the Dirichlet boundary condition

u(0) = ug, u(l)=wu. (1.3)
The functions b and f are assumed to be sufficiently smooth

be C?0,1], feC?0,1). (1.4)
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Fig. 1: The appearance of a boundary layer with ¢ — 0.

The small coefficient 0 < ¢ << 1 of the diffusion term causes the derivatives
of the solution to increase exponentially at = = 1 ([19], [23]). The appearance
of a boundary layer is illustrated in Fig. 1. Here the exact solutions of the
problem

exp(=2/¢)

—eu” 1+2 = 2 20 — 2 22—
e + (1 +2z)u)’ = 62" 4 22 — 2¢ + = exp(—2/2)’

xz € (0,1),
u(0) = u(l) =0,

are shown for four different values of the diffusion parameter €.

1.1.2 The asymptotic expansion of the solution
There are many techniques to describe the asymptotic behavior of the
solution of the problem (1.1)-(1.3) for small e. We use the method of expan-

sion in powers of € proposed by M.I.Vishik and L.A.Lusternik. We introduce
1—x

the new ('fast’) variable 7 = to describe the of boundary layer effects

near r = 1.
Applying the Vishik - Lusternik technique, we obtain the following ex-
pansion of the solution

u(z) = vo(x) + po(7) + € (vi(z) + p1 (7)) + %% ()

where vy and ev; are smooth components which give a good approximation
of the solution outside the boundary layer, pyp and €p; are boundary layer
terms, and £2Z(z) is a remainder term. Here, vg(x) is the solution of the
reduced problem

(bvo)/ =f on(0,1), wo(0)=ug (1.5)
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and vy (z) is the solution of the problem
(bv1) =vy” on (0,1), wv1(0)=0. (1.6)
The boundary layer functions are described by means of the problems
A(r) + b)) = 0. po(0) = ur —wo(1),  lim po(r) =0,
and
=1 (T)+b(1)p1 (7) = ' (1) po(7) =7t (1) (7), p1(0) = —va(1), lim 7 (7)
with the solutions

po(7) = (ur — wvo(1)) exp(=b(1)7), (1.7)
pi(r) = ((u1 = vo(1))b'(1)7%/2 = w1(1)) exp(=b(1)7). (1.8)
The functions py(7) are defined for 7 > 0 but for small values of € they

differ from zero only in a small vicinity of the point 7 = 0. Therefore we
multiply po(7) and p;(7) by the cut-off function from C?[0, 1] defined as

0, t<1/3,
s(t) = { monotonically increases on [1/3,2/3], (1.9
1, t>2/3

and pass to the variable x:

po(x) = s(x)po(T), pr(x) = s(x)pr(7). (1.10)

As a result, we get the following expansion of the solution of (1.1)—(1.3) for
small €

u(@) = vo(x) + po(x) + € (v1 () + p1(2)) + e*2(x). (L.11)

1.1.3 The estimates of the remainder term
We introduce the following norms for the function defined on the segment
[0,1]

1/p

/|v\pdx ,1<p<oo,
0

|v]lp = (1.12)

sup vrai|v|, P = 00.
[0,1]

The following theorem gives the estimate of the remainder term z(x) in the
uniform norm.

=0
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Theorem 1. Under the conditions (1.2), (1.4) the remainder term z(x) of
the expansion (1.11) obeys the estimate

l2lle <1 (1.13)

with a constant c1 independent of €.
Proof. We express z from (1.11):

1
2(2) = o (u(@) = vo(x) = po(z) — & (vi(2) + p1(2))) .-
We substitute this expression in (1.1) and use the expansion of the functions
b(z) and V' (x) into the Taylor series at 1. Collecting similar terms, we get

1
Lz(z)=f=ao +a1gA+a2

1 2
xA+a3ﬂ

- 54 (1.14)

where ag(z), a1(x), az(x), and az(x) are some bounded functions and A(z) =
exp(—(1—x)b(1)/e). Since the functions ¢ exp(—t) and ¢* exp(—t) are bounded
on [0, 1] by some constants, the last two terms in f are also bounded.

The calculation of z(0) and z(1) by means of boundary conditions for
the boundary layer components pg and p; and the use of properties of the
cut-off function s(t) yield:

z(0) = 2(1) = 0. (1.15)
The problem (1.14)-(1.15) satisfies the comparison principle [121]. Take

1(5) = exptorn) (20w (- U5DE) 4 (U521

as a barrier function where

1+ ma |b/| —v
o= X .
z€f0,1]  2b

Then
Ly(z) = [Lz(z)| on (0,1),  y(0)=0, y(1)=0.
Hence by the comparison principle we have

|2(z)| < y(z) < max y(z) =c1.
z€]0,1]

*) In what follows, ¢; denote constants which are independent of ¢, z, and of h
at a later time.
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This completes the proof. [
Along with the expansion (1.11) consider the asymptotic expansion

u(z) = vo(z) + p(x) + e21(x) (1.16)

which will be used to derive the quadrature rule in Section 3. Here vg(z) is
the solution of the reduced problem as before. The boundary layer compo-
nent is taken like in [121] in the form

p(z) = s(z) (u1 —vo(1)) exp(—(1 — z)b(z)/e). (1.17)
For the remainder term z;(x) the following estimate is proved in [121].

Theorem 2. Assume that the conditions (1.2), (1.4) hold and z; is given
by (1.16) — (1.17). Then there is a positive constant ¢4 such that the estimate

2 <e on [0,1], j=0.1, (1.18)
holds for sufficiently small €.

We also evaluate the difference between the functions py and p.

Lemma 3. Let py and p be the boundary layer components of order 0 given
by the formulae (1.10) and (1.17) respectively. Then there is a positive con-
stant cs5 such that the estimate

lpo — p| <cse on [0,1] (1.19)
holds for sufficiently small €.

Proof. By the mean-value theorem, the following inequality holds for any
z € [0,1]:

(1 —=z)b(1)/e) — exp(—(1 — z)b(x)/e)]

| exp(—
< (b(1) — () 2= exp(—(1 — 2)b/e)

where b € [By, By]. Since
[b(1) = b(x)] < [1 = z[|b']|oc < €51 — 2

and 2 exp(—at) < ¢7 for all @ > 0 and t € [0, 00), the following inequality
holds:

% exp(—(1 — 2)b/e)

[b(1) = b(x)]

1—2\> .
< 065<Tx> exp(—(1 —z)b/e) < cpere.

This completes the proof. O
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1.1.4 The weak formulation. The Petrov-Galerkin method

Multiply (1.1) by an arbitrary function v € Hg (0, 1). By applying Green’s
formula, we obtain the weak formulation: find u € H'(0,1) which satisfies
the boundary condition (1.3) and the equality

a(u,v) = (f,v) Ywve Hi0,1). (1.20)

Here a(-,-): H1(0,1) x H}(0,1) — R is the bilinear form

a(u,v) = /0 (eu’ — bu) v dz, (1.21)

and (-,-) is the standard inner product in L (0, 1).

To solve the problem numerically, we use the Petrov-Galerkin finite ele-
ment method. To begin with, we describe some spaces and estimates which
are necessary for the investigation of convergence.

We introduce a trial space S, € H'(£2) with a basis {p;
test space T}, € H(§2) with a basis {z/Jj}jM:l. Let a"(-,-) : S, x T, — R
be a bilinear form which approximates the form a(-,-) and f, : T, — R
be a functional which approximates the inner product (f,-). Then we have
the following formulation of the Petrov-Galerkin method (see, for example,
[39]): find u" € S, satisfying the boundary conditions (1.3) and the equality

M+1
}j=o and a

a(u ") = fr(") Vol e T, (1.22)

Since
Sh = span{LPOa ) <)OMJrl}, Ty, = Sp(m{ﬂ)l, awM}

the formulation (1.22) is equivalent to the linear system of algebraic equa-
tions
Lhuh = ph (1.23)

where UM = (uy,...,ups)” is the vector of unknowns, and Fh =

(fn(1)—alpos 1)uos fu(2), -, fr(brr—1), fa(ar)—a(prr+1, oar)unr41) T

is the right-hand side vector. L" is the matrix with the elements
LYy = (g5, ), i,j=1,..,M. (1.24)

The usual way to investigate the convergence of (1.22) consists in evaluating
the difference v — u” in the energy norm in terms of u — u! where u! is the
interpolant of the solution in Sj,. Then we obtain the estimate in L,—norm.
But for the singularly perturbed problems the estimate of u—u! may be very
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poor because of the boundary layer component of the solution. Therefore
we study the difference u — u” directly:

la"(u" — !, w")| = |a" (", W) — o (u W) + a(u, w") = alu,w")|
< Mw") = flwh |+ la(u, w") — a”(u',w")] (1.25)
+ la(p,w™) — a"(p!, w™)| + |a(z1, w") — a" (2], w™)| Vw" € Ty,

Here u is the solution of the differential problem (1.1), (1.3), u” is the
solution of the discrete problem (1.22), and uf, v{, p!, 2f € S}, are the
interpolants of u, vg, p, 21 respectively.

The basic idea of the method discussed here is to the construct an ap-
proximation of the bilinear form that reduces the error of the boundary
layer component. The general analysis of the problem and the construction
of the discrete analogue which gives the first order e—uniform convergence

can be found in [121]. We cite some results from this work.

For vectors V" = (vy,--- 7vM)T € RM we introduce the discrete p-
norms
M 1/p
dilv:lPd 1< p< oo,
IVl = (Z o x) mPe (1.26)
25, P
and
-1 T
IV, = (D" (L") V||, 1<p< oo (1.27)

Here D" is the diagonal matrix with the positive elements
d; = meas(supp p;), i=1,..., M.

Note that (1.27) is a norm in RM when the matrix L" is invertible. Together
[e]
with the space S;, we consider the space Sp= span{p1, ..., oar}. The spaces
[e]
Sy, and T}y, are equipped with different norms. In order to introduce these

norms we use the isomorphisms S5 < R™ and T}, — RM defined by
h:ZUiSOi GSh, Vh:(’l)l,~~~ ,UM)TGRM,

M
h:Z’LiniETh, Wh:(wla"'awM)TERM-

i=1
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We introduce for v €85}, and w” € T}, the norms

"l = IV"]l,  and  Jw"

=W, (1.28)

I,

respectively.
Because of definitions (1.24), (1.28), and the Hélder inequality the fol-
lowing estimate of the bilinear form a” holds.

Lemma 4. [121] Suppose that 1 < p < oo, 1/p+1/q = 1 and the matriz

[e]
L" is nonsingular. Then for all v" € S}, and w" € T), we have

lon- (1.29)

Now we formulate the basic convergence result.

hiph o h h h
|a” (0", w")[ < [Jo" ||, pllw

Theorem 5. Let u and u” be the solutions of the problems (1.20) and
(1.22), respectively. Then for the interpolant u’ of u in Sj the error es-
timate

hy _ h By I ,0hy _ h
Hul_uh”ph < sup |(f7w ) fh(w )+Z (u , W ) a(uaw )| (130)
T ke, {0} llw™ N, n
holds where 1/qg+1/p=1,1<p < oc.

Remark. The error estimate in the continuous LP-norm follows from
the norm equivalence

eslloll, p < Ioll, < collvll,,, Vv €S (1.31)

where constants cg, cg are independent of h.

The discrete problem which is first-order convergent, uniformly in €, was
constructed in [121]. In the next two sections we will obtain the second-order
method.

1.2 The Finite Element Method with a Linear Quadrature Rule

In this section we introduce the restriction
V(z) >0 on [0,1] (1.32)

which simplifies the proof of stability. This restriction provides the fulfill-
ment of the maximum principle for the problem (1.1) — (1.3). We show that
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for small ¢ this restriction can be introduced without loss of generality. As-
sume that for some zq € [0,1] we have b'(x) < 0. Introduce a new unknown
function

w(z) = u(z) exp(—ox)

with the positive constant

1+ ma |b/| —
o= X
z€l0,1] 2b

Then the problem (1.1) — (1.3) is equivalent to the following one

—ew” + (b —2e0)w' + (' + bo — e0®)w = fexp(—ox) on (0,1),
w(0) = wo, w(l) = uy exp(—0).

For small ¢ the coefficient of w is positive on the segment [0,1] since b’ +
bo — c0? > b — e0? > 0. Hence the maximum principle holds.
We consider the asymptotic expansion (1.11).

1.2.1 Construction of the quadrature rule
To approximate the solution u, we use the piecewise linear finite elements
on a nonuniform grid

wp={x;: 1=0,1,...,n; 0=z <21 <...<Zp_1 <z, =1}(1.33)

with a mesh size h; = x; — x;_1. For simplicity we consider a quasiuniform
grid satisfying the condition

010h S hi S h = max hi. (134)

1<i<n
We denote the set of interior nodes by
wh:{xi: T, EWh, t=1,..., nfl}.
Introduce the basis functions ¢;(z) € C[0,1] defined by
(l‘—l‘i_l)/hi, if xe [xi_l,xi]ﬁ[o, 1];
pi(2) = (@iv1 — @) /hiy1, i @ € (25, 2i41] N[0, 1];
0 otherwise

and the spaces of trial and test functions

Sp =span{yg,...,pn}t and T, =span{ei,...,pn-1}.
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To approximate the problem (1.20), we use the Petrov-Galerkin method:
find uh € Sy, such that u"*(0) = ug, u(1) = u; and

a(u, wh)y = (f,w") Vo' eT,. (1.35)

This approach has some disadvantages. With the boundary layer, the
solution of the algebraic system has unsatisfactory accuracy. Besides, this
system becomes unstable for ¢ < h. Finally, when constructing the algebraic
system, one have to integrate functions. Thus, the application of quadrature
rules is quite natural. We choose quadrature rules in a special way to ensure
stability and to improve the accuracy of the approximate problem obtained.

Therefore we return to the bilinear form (1.21). The first term is inte-
grated exactly for any u € Sy, v € T}. For the second term we use the
following quadrature rule on each interval:

Zq
/ bvdr ~ (Oéibiflvifl + ﬁzbﬂjl> h; (136)
Ti—1

where v; = v(z;) for an arbitrary function v(x). Using this formula for a
we obtain the new bilinear form a; of an algebraic type for v € S), and
wh € Ty:
n
ah(v,wh) = Z (E(Ui — Ui—l)/hi — Oéibi_ﬂ}i_l — ﬁzbﬂ}l) (wlh — wlh_l). (137)
i=1
The standard way to justify the accuracy of the Galerkin solution is
to use Strang’s first lemma and the closeness of the bilinear forms a and
a" with arguments from the class of admissible functions. Unfortunately,
in our case this method yields poor estimates due to the boundary layer
components pg, p1- Therefore we choose the parameters «;, 3; in such a way
as to make these bilinear forms as close as possible just for the functions
po, p1- For example, for the function py the exact equality

T
/ bpo dz = (a;bi—1p0,i—1 + Bibipo,i) hi
Ti—1

should be taken. However, this condition contains the integral in the left-
hand side, that does not permit to obtain the explicit expression in the
general case. Therefore for convenience we use (1.7), (1.10) for pg in the
right-hand side of this equality and replace b(z) by its linear interpolant.
As a result, we arrive at the equality

/xi (bi—1(z; — x)/hi + bi(x — x3-1)/h;) exp(=b(1)(1 — ) /e) dx

e (1.38)
= O[ibi,1 exp(—b(l)(l - xi,l)/s)hi + ﬁzbz exp(—b(l)(l - SCZ)/E)hZ
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Taking the integral in the left-hand side and dividing the obtained equality
by h;exp(—b(1)(1 — z;)/e) we get

1 1 1
a;bi_1 exp(—0;) + Bib; = bi—1 <; - exp(—o;) — 2 GXP(Uz’)>

A ? i

(1.39)
+0b ! ! + ! exp(—o;)
i\ — — 3 T 5 eXpl{—0;
o o2 2P
where o; = b(1)h;/e. To the above equality we add the equation
a;+ 6, =1 (140)

which permits to approximate an integral of a smooth function with the first-
order accuracy. Thus, we arrive at the system of linear algebraic equations
in two unknowns. Its determinant is given by

& =b; — bi_1 exp(—0;). (1.41)

Since V' > 0 and exp(—o;) < 1, & is strictly positive. Hence the system
(1.39) — (1.40) has an unique solution.

Thus, we can expect that the boundary layer function py satisfies the
equality

z;
/ bpo dz = (bpo); hi + O(h?). (1.42)
Ti-1
The proof of this statement is given later. Here we use the notation

(bpo): = a;bi—1p0,i—1 + Bibipo ;-

It is easy to verify that for p; we have
/ bp1 dx = O(e).
Ti-1

Actually the contribution of this term is still smaller due to the coefficient
¢ of the function p; in the expansion (1.11).
Now consider the remaining part of the solution

g(x) = vo() + vy (z) + 22(x). (1.43)
For g(z) the quadrature rule (1.36) has only the first-order accuracy:
/ b(x)g(z) dz = (bvo);hi + (1/2 — B;)hi(bvo);_,
xi—1
+ (bv1) by + O(h® + eh? + £2h) (1.44)
= (bg);hi + (1/2 — Bi) i (bg);_, + O(R® + eh® + £%h).
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Here we use the fact that the functions v{, v{, and z are bounded on [0, 1].
Take into consideration the equality

—e(po +ep1)” + (b(po +ep1))’ = O(e)

which results from the definition of py and p;. Then we transform the main
term of the error to the form

(bg)' = (bg)" —eg” + O(e) = (bu)' —eu” + O(e) = f + O(e).

Then instead of (1.44) we get

| sargta)de = Go)in,

(1.45)
+ (1/2 = Bi)h? fi—1 + O(K® + eh® + £%h).

When constructing the bilinear forms a and a” all the terms are multiplied
by —(w")’. Therefore the main term of the error a(g, w") —a”(g, w") on the
segment [z;_1,x;] takes the form

—(1/2 _5i)hz2fi—1(wh);'—1/2- (1.46)

We construct the quadrature rule for the right-hand side to eliminate this
term. We rewrite the functional in the right-hand side as

1 1
/ f(x)w"(z) dz = f/ F(x)(w"(z)) dx Vuw"eT" (1.47)
0 0

with the antiderivative F’'(x) = f(z). Using the Taylor expansion, in a
similar way as (1.44) we obtain

[ F@de=Fens /2= )G+ O, (148)

Thus, the main term of the error coincides with (1.44). In order to avoid the
calculation of the antiderivative, we use the difference analogue of integra-
tion by parts taking into account the boundary conditions w"(0) = w"(1) =
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1 h ——1 xwhx’x:—n - 2)(w" dz
/Of(w)w (2) d = /()F( (" () d §_j/F< (") d

:*Z Vic12(Fyhi + (1/2 = B)RE fimr) + O(0®) Y (w")i_1 o
=1

n

—Zw Fi - F)— Z(l/Q—ﬁi)h?fi—l(wh)gfl/z

i=1
+O(h3) Z(wh)gq/r
i=1

We choose the weights u; and v; in such a way as to replace the difference
between the values of the antiderivative F' by the function f with the third-
order accuracy:

Fiyy = F = pifioa+vifi+ O(h®). (1.49)

Then we use the Taylor expansion at the point z;_1 and set the coeflicients
of h; and h? to be equal:

pi +vi = hi(1 = B;) + hiy1Bit1,

(1.50)
2uih; = hZ(1 — Bi) + hiv1Biv1(2hi + hiyy).

Hence p; and v; are uniquely determined. As a result, in the right-hand side
we get the approximate functional

n

Fa@") = (pifioa +vifow) (1.51)

=1

with the coefficients p; and v; from (1.50).

On substitution of the bilinear form a(-, -) and the right-hand side (f, w")
into (1.35), we obtain the discrete problem: find u" € Sy such that u"(0) =
ug, uP(1) = uy, and

a(u", W) = fr(w") Y wh e Ty, (1.52)

We rewrite this problem in the equivalent matrix-vector form: construct

the function
n
"= Z%%
i=0
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with the weights v; which satisfying the conditions vo = ug, v, = u1 as well
as the system of linear algebraic equations

Aly = FP (1.53)

with the vector of the unknowns v = (4, ..., *yn_l)T and the given the right-
hand side F* = (F*, ..., FI_ )T where

F1h = p fo + v1f1 + aruo,
Fih = wifi—1 + vifi, 1=2,...,n—2,
Fr =i fno+ V1 fa1 +en_1us.

The matrix A" has the tridiagonal form

d1 —€1
—ag d2 —€9 0
Al =
0 —Aan—2 dn—2 —€n—2

—an-1 dn—l

and its elements are given by

a; = e/h; + a;b;_1,
di = E/hl + €/h¢+1 + Oéi+1b7; — ,Blb“ (154)
e; =¢/hiy1 — Bit1biy1, i=1,..,n—1

1.2.2 Properties of the discrete problem
Now we investigate the discrete problem.

Lemma 6. Under the restrictions (1.2), (1.4), (1.32) for any ¢, h > 0 the
matriz A" of the system (1.53) is an M-matriz and hence is nonsingular.
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Proof. First we consider the parameter «; of the quadrature rule. From
the equations (1.39), (1.40) we have

1 oiexp(—oi) — 1 + exp(—0y)
i = b;—
“ b; — bi_1exp(—o;) ( ! o}
2
2 .11 — .
o TR exp( "’)) (1.55)
0y
B 1 1 —exp(—o;) 1
o bz — bifl exp(—oi) ( 01'2 (bl bz—l) + bz) ag;

where o; = b(1)h;/e. Since the inequalities o; > 0, exp(—0o;) < 1 and
b'(x) > 0 hold for arbitrary e and h, we have

oy > l/O'i Ve, hi >0. (156)
Due to (1.54), (1.56), and inequality b;—1 < b(1) the estimate

e _bine = 4o
hi  b(M)h; hy T

0<

holds. Hence the coefficients a; of the system (1.53) are strongly positive.
The proof of the positiveness of e; is rather complicated. Because of the
definition of f3; 11 the following equalities hold:

3 bit+1 1 exp(—0i) exp(—0i)
i= bi| = — - - —0;
€ 4 bi+1 — bl exp(—ai) < (0’12 a; 022 exp( 7 )
1 1 exp(—o;
+ bit1 <——2+#>>
o; O] o;
(1.57)
_ £ b} n bit1 bi exp(—0;)
hi ag; (bi+1 — b, exp(—ai)) bi+1 — bl exp(—ai) ag;
biy1 —b;
+ byexp(—o;) + ﬁT (1 —exp(—0y)) )
The difference of the two list terms in the right-hand side equals
b(].)bZJrl — b12+1 + b(l)bl exp(—oi)
ag; bi — bz exp(—o;
(bi+1 p( ) (1.58)

_ biga(b(1) = big1) + b(1)b; exp(—0i)
i (bit1 — biexp(—0;)) '
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Under the restrictions (1.2) and (1.32) both terms in the numerator are
nonnegative and the denominator is positive. For the same reason, in the last
term all three quantities in parentheses are nonnegative and the coefficient
of the parenthetical expression is positive. Hence we have e¢; > 0 V i =
1,...,n—1.

For the system (1.53) the following relations hold:

dy —ag >0,
di—aﬂ_l —€;—1 :O7 i:2,...,n72, (159)
dp_1—€pn_o > 0.

Because of the positiveness of a; and e; for all 4, the matrix in (1.53) is
diagonal-dominant along columns and strictly diagonal-dominant along the
first and the last ones. Taking into account the fact that the matrix A" is
irreducible [21], this leads to the conclusion of Lemma 6. [

Lemma 7. Let Wh = (wy, ...,wn_l)T be the solution of the problem
(A wh = Q" (1.60)

with some right-hand side Q" = (q1, ..., qn_l)T. Under the restrictions (1.2),
(1.4), (1.32), and

e < ec11h, c11 >0 (161)
the estimate
n—1 n—1
Z |w; —wi—1| + Jwi] + |wp-1] < c12 Z q (1.62)
i=2 i=1

holds with a constant c12 independent of € and h.

Proof. In a similar way as Lemma 3.3 in [121] we rewrite the system
(1.60) in the form

ei—1(wi —wi—1) + i1 (w; — wit1) = g, i=1..,n-1,
wo = w, = 0.
Using the notation
v = Wi — Wi
we write the difference equation from (1.63) as

€i—1 q;
Vs _

Vi4+1 = % .
Qi1 i1
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Let us set
-1 -1
Hékzl and Z&kzo
k=l k=l
for arbitrary 0. Then for all i = 1,...,n the equality
i-1 [ -1

vﬁlee“fZ I 2] % (1.64)

a a a
J+1 50 \ ks YR 7+l

holds. Taking into account the equality

n
E v; = w, —wy =0,
j=1

we obtain the initial value

n 1—1 1—1 n 1—1
= ] 2= / S-1 (1.65)
im1 =1 \kmjg1 W1 | A1l T G
From (1.64) and (1.65) we get
n n i—1 ei 1 n 1—1 i—1 e 1 |q|
POICIEDDE N | Bl IR DD DN B | Bl e
i—1 i=1 \j=1 Jt1 i=1j=1 \k—=jt1 B+ [ %3+l

(1.66)

oy S 1 el

Ak+1 | Q541

Taking into consideration the definition of the coefficients a; and e in
(1.54), the restriction (1.56), and the fact that b is bounded due to (1.2),
we obtain the inequalities

CL—1 = E/hz — ﬁkbk S E/Cloh,
Ap4+1 = €/hz + Ozk_ku 2 E/Clohi + Bo/2,
1/ajy1 <1/ (g/hi + Bo/2) < 2/Bo.

Applying them to the right-hand side of (1.66), we have the estimate

T k-1 | gl < 2 — "9 q;|  where 77:—1
k=11 ak+1 | Gj41 By J 1+ B()Cloh/25
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Using this inequality we change the order of summution in the right-hand
side of (1.66):

4 n i—1 n n—l
B—ZZWH’JI%I— Z 'y
0%—1j=1 0721 j=1

(1.67)

éi 2%_ Z|qj

Thus we get (1.62) with the constant ¢;2 = 4(1 + 2¢11/Bocig)/Bo. O
In the terms of the norms in the spaces of trial and test functions (1.26)
and (1.28) the estimate (1.62) for functions w” € T}, has the form

!
1) 1 < cazllwlly - (1.68)

1.2.3 Convergence result
Now we consider the main theorem of this section.

Theorem 8. Let (1.2), (1.4), (1.32), and (1.61) be valid for the problems
(1.53) and (1.1) — (1.3) with the solutions u” and u respectively. Then the
estimate

Jax [ul —u;| < e15(h? + &% /h+ch + %) (1.69)

holds.

We will proof the same theorem in more general case in the next section.
Notice that according to (1.69) the approximate solution has the second-
order accuracy with respect to h for € << h, in particular, for ¢ < h3/2, The
numerical experiments presented in Chapter 3 confirm this result. Thus, for
€ < h the constructed scheme is more accurate in comparison with other
well-known methods, for example, with the first-order scheme from [121].

1.3 The Finite Element Method with Nonlinear Quadrature
Rule

In this section the monotonicity (1.32) of the function b(x) is not required
because of the application of the nonlinear quadrature rule for the approx-
imation of the convective term in the bilinear form. Theoretically this con-
dition is not too restrictive, but in practice it is inconvenient, for example,
when the function b(z) is given discretely.
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1.3.1 Construction of the quadrature rule

We return to the approximation of the bilinear form (1.21). The first
term is integrated exactly for any w € Sy, v € T},. For the second one we
use the following quadrature rule on each interval:

/ 1 bvdx ~ (aibi—l + ﬂzbz) (Oéi’Ui_l + ﬁﬂ}z) h;. (170)

Unlike the similar formula (1.36), in this case in the points for the calculation
of the values of the functions b and v are choose individually with the help
of the parameters a; and 3; on each interval [z;_1, 2;]. When we use (1.70)
for a, we obtain the new bilinear form a” of an algebraic type for v, w" € Sj:

n

ah(uwh) = Z (E(’Ui —v;—1)/hi

(1.71)
— (aibi—1 + Bibi) (vi—1 + Bivi) ) (wf - wﬁil).

As before, we choose the parameters «;, 8; so that the bilinear forms a
and a” are as close as possible just for the function py. Generally speaking,
the exact equality

/ bpdx = (aibi—1 + Bibi) (ipo,i—1 + Bipo,i) hi
Ti1

should be taken. However, this condition contains the integral in the left-
hand side, that does not permit to obtain the explicit expression in the
general case. Therefore for convenience we replace b(z) by its value b(z) =
b = aibi—1 + Bib; on [x;_1,x;]. Thus we arrive at the equality

/ by exp(—bi (1 —x)/e) dx
Ti—1

(1.72)
= b} (ai exp(—b; (1 —x;—1)/e) + Bi exp(—=bi (1 — :EZ)/s))hZ

Taking the integral in the left-hand side and dividing the obtained equality
by h;exp(—b} (1 —x;)/e), we get

a;exp(—o;) + 8; = (1 — exp(—0;)) /o; (1.73)
where o; = bfh;/e. To the above equality we add the equation
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which permits to approximate an integral of a smooth function with the first-
order accuracy. Thus, we arrive at the system of linear algebraic equations
in two unknowns.

Notice that for the function b with the constant value bcopnst,; on the
segment [z;_1,x;] the system (1.73) — (1.74) becomes linear:

1
Qconst,i eXp(_Ui) + ﬂconst,i - 0__ (]- - eXp(_Ui)) )
3
Qeonst,i + 5const,i =1.
Its solution is obtained in the same way as in [121]:

1 1 1 exp(—o;)
Qconstyi = 7 7 _~ ﬁconst,i = - T 7
1—exp(—0o;) o o; 1 —exp(—0;)

In particular, for any positive beonst,i this solution satisfies the inequalities
1/2 < tconsti <1, 0 < Beonst,i < 1/2 ¥V hy,e > 0.
Further we consider the case
e <h? (1.75)

which is of practical importance. We express (; from the system (1.73) —
(1.74):

1 exp(—0;)
ﬁi - 0_2 - Tp(—ol) (1.76)

From (1.74) it follows that
a; =1— 0. (1.77)
Taking into account the definition of b} and (1.77), we can write o; as
o; = (bi—1 + Bi (bi — bi—1)) hi/e.

Hence there exists at least one solution o, §; of the system (1.73) — (1.74)
with the properties

1/2<a; <1, 0<p;<1/2.

This follows from the fact that for 8; = 0 the left-hand side of (1.76) is
smaller than the right-hand one, and the opposite is true for §5; = 1. There-
fore, the root can be found by the bisection method.
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Now consider the remaining part of the solution

g(x) = vo(x) + ez (x).

In a similar way as in (1.44), using the fact that the functions v{, v{, and
z1 are bounded on [0, 1], we can show that the quadrature rule (1.70) has
only the first-order accuracy:

[ bgte) e = bigiha + (/2= 02y + O, (178)

We calculate (b(z)g(z))" in (1.78) only at the interior points of the domain
(2. Therefore, considering the inequality (1.75) and the definition of pg and
p1, we obtain the estimate

—c(po+ep)” + (b(po+ep1)) <coe for z<1—h,.

Taking into account this estimate, we transform the main term of the error
in (1.78) as follows:

(bg) = (bg) —eg" + O(e) = (bu) —eu” + O(e) = f + O(e).
Then instead of (1.78) we get

/1b@mwwx=@ﬁm+0ﬁ—&mﬂﬁrHX@+ﬂﬁ+¥m)

Recall that when constructing the bilinear forms a and a” all the terms are
multiplied by —(w")’. Therefore the main term of the error on the segment
[€i—1, ;] has the form

—(1/2- 5i)hz2fi—1(wh);'—1/2-

We use the same functional of the right-hand side as in (1.51) with the
coefficients (1.50) to eliminate this term.

Substituting the bilinear form a(-,-) and the right-hand side (f,w") into
(1.35), we obtain the discrete problem: find u" € S;, such that u"(0) = uo,
u(1) = uy, and

a(u", W) = fr(w") v uwh e T,. (1.79)

We rewrite this problem in the equivalent matrix-vector form: construct

the function
n
T
i=0
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with the weights 7; which satisfy the conditions 79 = ug, T, = u1 as well as
the system of linear algebraic equations
Al =F (1.80)
with the vector of unknowns
T = (71, ...7Tn,1)T

and the given the right-hand side

Fh=(Fh . )T

where

Fl' = p1 fo + vifi + arug,
Fih = i fi—1 + vifi, 1=2,...,n—2,
Fr?fl = IU/nflfn72 + anlfnfl + €ep_1U1.

The matrix A" has the tridiagonal form

d1 —e1
—Qa9 d2 —€9 0
Al =
0 —Q0p—2 dn—2 —€n—2

—0n-1 dnfl
where
a; = €/hi + Ozib;'k,
d; = E/hi + E/hi+1 + ai+1b;-k+1 — Biby, (1.81)
ei = ¢€/hiy1 — Big1bj .
1.3.2 Properties of the discrete problem
Now we investigate the discrete problem.

Lemma 9. When the conditions (1.2), (1.4), (1.75) are satisfied for any
h, € > 0 the inequalities

1/2<a; <1, 0<pB;i<1/2 (1.82)
hold.
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The lemma is proved in the same way as Lemma 3.2 from [121].

Lemma 10. When the conditions (1.2), (1.4), (1.75) are satisfied for any
h, e > 0 the matriz A" of the system (1.80) is an M-matriz and hence is
nonsingular.

Proof. From (1.81), (1.82), and (1.2) it follows that a; > 0 for all i. We
show that e; > 0 for all i. For e; we have
€
i =7 = Bit1bi.
€ hHJ /3+1z+1
From (1.76) it follows that

1 exp(—0it1)
oix1 1 —exp(—oip1)

Bit1 =
Collecting two last equalities and the definition o1 = b}, hi11/e, we get
_ b1
1 —exp(—0oit1)

Since the inequalities o; > 0, exp(—o0;) < 1, and b(z) > By > 0 hold
for any ratio between € and h, we have

e; >0 Ye,h>0.
For the system (1.80) the relations

€;

dy —ag >0,
di —aj4y1—e€-1=0, 1=2..n—2
dp—1—€p—2>0
hold. Because a; and e; are positive for all i, the matrix A" is diagonal-
dominant along columns and strongly diagonal-dominant along the first and

last ones. Taking into account the fact that the matrix A" is irreducible [21],
this completes the proof. O

Lemma 11. Let W" = (wy, ...,wn,l)T be the solution of the problem
(A 'wh =" (1.83)

with some right-hand side Q" = (q1, ..., qn,l)T. Under the restrictions (1.2),
(1.4), and (1.75) the estimate

n—1 n—1
D wi = wisa| + wi| + [wn 1| < 10 Y il (1.84)
i=2 i=1

holds with a constant c1¢ independent of ¢ and h.
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Proof. We use the inequality (1.66) from Lemma 7:

n t—1 i—1

Z|ul|<zzz | (1.85)

a a;
i=1j=1 \k=j+1 B+l | 4j+1

Taking into consideration the definition of the coefficients aj and ey, in (1.81)
and the fact that b is bounded, in accordance with (1.2) we get

i—1

1—1
€h_1 1 1 3
o) L L ep(-o)) [] expl-on
ke=ji1 kL) ol i k=j+1

< Bio (1 — exp(—Bih;/e)) exp (-%(%‘—1 - l“j)) :

Using the last inequality, we change the order of summation in (1.85):

n n i—1
2 By
Sl < oy 301 - epl-Bin/e) S (-2t -2) 0

= Z 4 Z (1 — exp(—Bihiy1/€)) exp (—%(xi — a:])>

j=1 =741

IA
| ro
. 3
E.ﬂb—‘
]
QU

&8
| | ™
Qi%

Here we applied the inequalities 1 — exp(—t) < 1 and t exp(—at) < d which
are valid for ¢ € (0,1) and o > 0 with a constant d. Due to (1.75) and
(1.34), the last sum over ¢ can be estimated by a constant ¢1;. Taking into
account the definition of v;, we complete the proof of the estimate (1.84).
O

In terms of the norms in the spaces Sp, and T}, the estimate (1.84) for
functions w" € T}, has the form

1(w™) 1 <

(1.86)

1.3.3 Convergence theorem
Now we consider the main result of this section.

Theorem 12. Let u be the solution of the problem (1.1), (1.3) with the
conditions (1.2), (1.4), and u" be the solution of the problem (1.80) with the
condition (1.75). Then the estimate

jnax, |l —u;| < c15(h* +eh + e+ +£2/h) (1.87)
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holds.
Proof. By Theorem 5 for p = oo the estimate

_ T
e [ = i = =,
") — ) £t ) — ]
< sup fw") — fn al(ul, wh) — a(u, w
wheTy, flwh Hll,h
holds.

We denote by g(z) the sum of the smooth component and the remainder
term in the expansion (1.11):

g(x) = v +evy + &%2(x).
Then we can write
|(f;w") = fr(w") + a"(u, w") — a(u”, w")| < |a" (po, w") — a(po, w (”1)\ ko)
+ela” (pr,w") = alpr, w)| + |(f, 0") = fu(w") + a"(g,0") — a(g, w"

Consider the first term in the right-hand side

n

‘Z(E(pm poi—1)/hi = b;pg ;) (w?—w?q)—/o (Epé)—bpo)(wh)’dx‘

i=1
1
2’/ bpo(w dx—zb*/’m w) —w hfl)"
0
Rewrite the term e
A= [ bmdo g,
hi Ti—1 ’
as

%

1 i * ok * * *
A":h/ (bp+b(po — p)) dz —b;p; = b7 (p5; — i)
Ti—1
< ;;— bp«im —-b?p? + c16€ ::fiﬁ
Z 1

Here we use the estimate (1.19) from Lemma 3. Using the identity (1.72),
we get

b} (cv; exp(—(1 — xi_l)bf/e) + Biexp(—(1 — x;)b} /e))
:hi/ bt exp(—(1 — 2)bt /<) da.
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Then we transform A; to the form

A; = 07 5; (exp(—(1 — )b /) — exp(—(1 — @)b;/¢))
+ bj i (exp(—(1 — @i—1)b; /e) — exp(—(1 — zi—1)bi—1/€))

) (b(x) = b7) plz) dx
+ Z_ “7 (exp(—(1 — z)b(z)/e) — exp(—(1 — )b’ /&) dz + c1ge.

The first term is estimated by the mean-value theorem:

lexp(—(1 — ;)b /e) — exp(—(1 — z;)bi/e)| <
b — by 1- 2 exp(—(1 — a;)b/e) where b e [By,By]. (1.91)

3

Besides, |b — b;| < h;||b|| and the function 2 exp(—Byt) is bounded by a
constant ¢;7 on (0,00). Using (1.2) and (1.82), we obtain

b; Bi lexp(—(1 — z;)b; /e) — exp(—(1 — :)bi/e)|

ch;
< 017B161'||b/”o<>141 < cige.
—Z 1

In a similar way we estimate the second term in (1.90):
b:()li |exp(—(1 - l‘¢_1)b:/€) - exp(—(l - in_l)bi_l/é‘” < ci9€.
The third term is also estimated with the help of (1.2) and (1.82):

1

h;

[ =) pta) s

<1Vl /x exp(—(1 — x)By/e) dx
. o (1.92)
= ||b'||ooB#0 (exp(—(1 — x;)Bo/e) — exp(—(1 — ®;—1)Bo/€)) < caoe.

The integrand in the fourth term is estimated in the same way as in (1.91):

lexp(—(1 — 2)b(x)/e) — exp(—(1 — )b; /¢)]

L (1.93)

< |t [|oo exp(—(1 — 2)b/e), where be [Bo,Bil.
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Using this inequality, we obtain the estimate of the fourth term in (1.90):

Z—/ (exp(—(1 = 2)b(x)/e) — exp(=(1 = 2)b] /¢)) da

< 022/ 5 a exp(—(1 —z)b/e) dx

i—

. (1.94)
1-— b = T
< co3¢ <1 + ( Ex) ) exp(—(1 —x)b/e)
Ti—1
< coa€ (exp(f(l — x3)b/e) — exp(—(1 — xi_l)i)/e)) < coq€.
Summarizing the estimates (1.91)—(1.94), we can write
|AZ‘ S Co6E. (195)

n

Thus, for the first term in (1.89) the following estimate holds:
< cyre Y |wi — w1

ZA i — wi71> ,
=t (1.96)

< cosel|(w")'[l1,n < ca0el (w")’

|ah(p07w ) —a va | <

Estimate the second term in (1.89):

n

> (elpri = pri—1)/hi = bipt,) (wf —wl ) = [ (eph — bpr)(w")' da
0

i=1
*’/ bp1(w dﬂﬂ*Zb*Pu( i*wlh—l)‘~
=1
Consider the expression
1 [ .
B; = W bp1 dx — b; (aip1,i—1 + Bip1i) -
v Jxi1

Taking into consideration the form of the function p;, we can estimate the
first term in the above expression:

1 [
2 by d
hi/,.lpl v

i—

S Cgo{i/hi.
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The second term is bounded due to the estimates (1.2) and (1.82). Thus,
we have

Bi S 0315/hl—.
Hence, we obtain

n

> Bi(w; —wi-1)

=1

‘ah(plﬂwh) - a(phwh)' <

(1.97)

9 9
< 5c322 |wz wi—y| < 5633H(wh)/\|1,h < E034|||(wh)/|||1,h-

This estimate is worse than (1.96). However, the boundary layer component
p1 and the estimate (1.97) have to be multiplied by ¢, that gives the same
order of convergence.

Finally, consider the last term in (1.89):

‘ /01 fwh dz — i(uifil + v fi)wl — /Ol(f;‘g/ — bg)(w") dx
—Z( — gi1)/hi = b7 ) (wh = wl )|

1
<‘—/ F(x dm—i—/ bg(w™) —
0

() ) ot )|

1
= | [ o= Pty + 30 (ol = wla) + il — bl —wl ) |

i=1

where F'(z) is the antiderivative of f(x) and #; are the values of a function
bounded on [0, 1]. Consider the term

1
C; = n ). (bg F)dx + a;Fi_1 + B F;
(a1 i— 1 /61 z) (aigi—l - /3291) .

Using the expansion of the functions buvg, bvy and b*vg, b*v] into the Taylor
series at the point x;_; and taking into account the fact that bz, b*z* are
bounded, we get

[
E/ bgdx —b*g* = (1/2 — 3;) hi(bg)i_; + O(h* +ch + £2). (1.98)
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In view of the definitions of the boundary layer components py and p; the
estimate

—e(po+ep1) + (b(po+ep1)) <esse Vel
holds. With the last inequality we have
(bg) = (bg)' —eg" + O(e) = (bu)’ —eu” + O(e) = f + O(e).
Than the main term of the error in (1.98) has the form
—(1/2 = Bi)hi fica(w")i_ )5 + O(h? + eh).
From the identity (1.48) we obtain

1 [

- F(z)de + FF = —(1/2 — B;)hifir + O(h2).
1 Jxi—1

Thus, the estimate
|Cz| < 036(h2 +eh + 62)

holds and we have
(") = fuw?) + 0 (g, ") = alg, w?)| < |30 Coluwl —wiyn) + W
i=1
< c37(h® + eh + €2) Z lwl —w;_q1n| < c3g(h® + eh + €%)||(w") |1 (1.99)

i=1
< cg9(h® +eh +€?)|w"|

I+ 5

Finally, the estimate (1.87) follows from the relations (1.88), (1.89) and
estimates (1.96), (1.97), and (1.99). O

Notice that, as before, for ¢ < 1 and even for ¢ < h in the case of
practical importance, the accuracy of the obtained solution in accordance
with the estimate (1.87) is of the second order with respect to h. This is
confirmed by numerical experiments in Chapter 3.

As a result, for € < h the constructed scheme is more accurate than the
similar one of the first-order accuracy from [121]. Therefore we concentrate
our efforts upon this case. It should be noted that the convergence is proved
for a non-uniform grid.

Now we discuss the question connecting the calculation of the coefficients
a; and §; of the nonlinear system (1.73) — (1.74) on each interval [z;_1, z;].
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Taking into account (1.76), we have the following formula for the coef-
ficient (;:

1 exp(—o;)

Bi = , where o; = (bj—1 + 3; (b — bi—1)) hy/e.

oi  1—exp(—o;)
Since the derivative b’ is bounded, we have
b; =bi—1+ hi—16;—1 where |§;_1] < ||b']|co-

Using this notation, from the system (1.73) — (1.74) we get

exp(—o;)
Bi=
1 —exp(—o;)
(1.100)
1 (bi—l hi—10i—1 hi—15i—1)
+ - 2 .
bi—1+ hi—10;—10; \oi—1 = 0i—1(1 — exp(—0i_1)) iy

Taking into account (1.2) and (1.75), we obtain the following estimate of
the derivative of the right-hand side of (1.100) with respect to §;:

hi—10i—1 bi—1 hi—10i—1 ~ hic10i < ene
(bi—1 4+ hi—16;-10;)? 2 =0

i1 0i—1(1 —exp(—0i_1)) i1

with a constant ¢y independent of ¢ and h. Thus, for € < 1 the right-hand
side of (1.100) is a contraction operator on [0,1] with a sufficiently small
contraction coefficient of order €. Therefore we define 3; as the limit of the
iterative process

ﬂi = hm Sj
J—00

where

S0 = 5const,i;
e

S+l = hi(bifl + Sj(bi - bifl))
~exp(=(bi—1 + s;(bi — bi—1))hi/e)
1 —exp(—(bj—1 + sj(b; — b;—1))hi/e)

Then «o; =1 — f; is determined from (1.74).

The numerical experiments confirm the fast of convergence of the it-
erative process (1.101). When calculations were performed for the model
problem, 2-4 iterations were need to obtain an accuracy of 1077,

(1.101)
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2 Two-dimensional convection-diffusion problem

2.1 General remarks

2.1.1 Qualitative behaviour of the solution
Let {2 be the unit square (0,1) x (0,1) with boundary I'. Consider the
Dirichlet problem

Lu=—cAu+ %(b(ay)u) =f in £, (2.1)
u=0 on I (2.2)

Here, as usually, ¢ < 1 is a positive small parameter. The functions b(x)
and f(zx,y) are sufficiently smooth:

be C*([0,1]),  fla,y) € C*(02). (2.3)

Under this assumptions the problem (2.1), (2.2) has a unique solution
in C?(92) (see, e.g., [87]).

The behaviour of the solution in the two-dimensional case is more com-
plicated than in the one-dimensional case. In addition to the exponentional
(regular) boundary layer, as in Chapter 1, there is a parabolic boundary
layer that arises near some parts of the boundary. The boundary layer of
this type is formed due to the fact that the characteristics of the reduced
problem (for ¢ = 0) is tangent to the boundary. Besides, corner boundary
layers can arise at the vertices of square.

Let the conditions

0< By <b(zx)<By<oo, z€]0,1]; (2.4

£(0,0) = f(1,0) = f(0,1) = f(1,1) =0 (2.5
be fulfilled. Then the solution of the problem (2.1) — (2.2) belongs to C3(§2)
([40]). Notice that the derivatives up to the third order are continuous and
hence are bounded on (2. But the constants in the estimates of this deriva-

tives depend on e and increase indefinitely as ¢ tends to zero.
Let us introduce the notations

Fin:{(mvy):xzoﬁ yE[O,l}},
Lot ={(z,y): =1, yel0,1]},
th:{(xay):xe[ovl]a yZO,l}.

Here the regular boundary layer arises near I,,; and the parabolic boundary
layer arises along I}, (see Fig. 2).
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Fig. 2: Domain {2.

Notice that in general the operator corresponding to the left-hand side
of (2.1) with the mixed boundary conditions does not satisfy the maximum
principle (for example, for ¥’ < 0), however the comparison principle still
holds. Later the comparison principle is applied to the differential operator
of the form

ou
=—cA b— +d 2.
Lu eAu + 8x+ u (2.6)

where b(z) satisfies the assumptions (2.3), (2.4) and d(z) is a bounded
function on [0, 1] that is defined in each individual case.

Lemma 13. Let € > 0 be small enough. Assume that (2.3), (2.4) hold and
u,w € C2(N2)NC(N) satisfy

[Lu] < Lw in  £2, lul <w on T. (2.7)

Then the estimate
lu] < w on 2 (2.8)

s valid.
Proof. Introduce the functions

v(z,y) = u(z,y)exp(—ox)  and  z(z,y) = w(z,y) exp(—oz) (2.9)
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with the constant

_ |d(=)|
oc=1+ zrél[%ﬁ] bz) (2.10)
Transform the differential operator £ into
(E@(m, y)) = exp(—ox)L (P(z,y) exp(ox)), (2.11)
that gives
~ g
E(ey) = = A(r )+ (0(a) ~220) 22D 4 (a0 4 0b(r) ~20?) ().
Assume that
ce (O,B1 /(402)]. (2.12)

Taking into consideration the definition of ¢ and the smallness of €, we

obtain
d+4ob—co? = —|d|+b+|d — B1/2>B;/2>0 on [0,1], (213
b—20 >b—2Byo/dc> =b— By/20 > B;/2 on [0,1].

From (2.7) we have

\Lo| < Lz in £,
v <z on I

The operator £ satisfies the maximum principle (see [114]). As a conse-
quence we obtain -
lv| < z on (2.

Multiplying the last inequality by exp(oz), we get (2.8). O
When on I}, we can estimate not a function u but its normal derivative
only, the comparison principle also holds.

Lemma 14. Let ¢ > 0 be small enough. Assume that (2.3), (2.4) hold, and
u,w € C?(0) satisfy

|[Lu] < Lw in {2,

5 5 (2.14)
U w
|U| Sw on F\th, % S % on th.
Then the estimate -
lu] < w on {2 (2.15)

be valid.
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Proof. We introduce the constant o by (2.10) and assume that ¢ satisfies
(2.12). We use (2.9) and consider the operator £ from (2.11). Then £ satisfies
the maximum principle again. Notice that on I}, we have 0/0n = £0/0y,
therefore

|Lv| < Lz in £,
Ov

0z
— | <
on

|U|SZ on FinUFouta _a_
n

on th.

First we prove (by contradiction) the statement of the lemma in the case
of z = 0 and, consequently, v = 0 on {2. For this purpose we suppose that
there exists a point (z,%) € 2 where v(z,y) < 0. Assume that at a point
(20,90) € £2 we have

v(20,Y0) = minv(z,y) < 0. (2.16)
2

Since £ satisfies the maximum principle, (z9,y) does not belong to f2.
Because of the condition on I, U Iy, the point (xg,yo) does not belong to
this part of the boundary. It remains that (xo,yo) € I;4. Assume that, for
definiteness, yo = 1. Because of the condition on I}, we have

ov ov

i _ 2= > 0.
877, (1'0, ].) 8y($0, ].) = 0

If Ov/0y(x0,1) > 0 then due to continuity there exists an interval [1 — 4, 1]
in y on which this inequality holds. Use the Taylor expansion

00,1 - 8) = v(zo, 1) —62—;@0,77), nell—o1l.

It implies v(xg, 1 — §) < v(xg, 1) that is in contradiction with (2.16). There-
fore

v
“(x0,1) = 0.
9y (20,1)
Applying this reasoning to the second derivative, we obtain
0%v
a—yQ(l’O, 1) > 0.
In a similar way we get
% (40,1) =0 and 82”( 1)>0
—(x = and — (= .
ox 05 8332 0> el
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Using the above four relations in the expression (Lv)(zo,1), we obtain
(Lv)(20,1) < v(20,1)B1/2 < 0.

This is in contradiction with the condition Lv > 0on {2 which follows from
the same condition on {2 and from the continuity of v and its first and
second derivatives. Thus, our assumption that v can take negative values is
wrong. Hence, v > 0 on 2.

Finally, using the last statement for the functions z — v and z + v, we
obtain z —v >0, z+v > 0. Hence |[v| < z on §2 that implies

lu| <w on 2. O

2.1.2 The weak formulation .
Multiply (2.1) by an arbitrary function v €WW3(§2). By applying Green’s
formula we obtain the weak formulation: find u GI/?/%(Q) such that for all

v EWL(0)

a(u,v) = (f,v) (2.17)
with the bilinear form
v
a(u,v) = / eVuVv —bu— | df? (2.18)
o} 8.’1)
and the inner product
(f,v) :/ fvdf. (2.19)
10

Let us introduce the norm
|v]|co = sup vrai |v].
0
We use the notations 0; for a partial derivative 9/0x and 9, for a partial

derivative 9/0y. Similarly we denote the second derivatives by dag = 02(92)
and so on.

2.2 The scheme with the fitted quadrature rule for a problem
without parabolic boundary layers

In this section we consider the method for the problem (2.1) — (2.2) with a
solution free of a parabolic boundary layer near I3,.
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2.2.1 The differential problem
Assume that

flz,y)=0 on I (2.20)

Then under conditions (2.4), (2.20) the first and second partial derivatives
of the solution of the problem (2.1) — (2.2) with respect to y are bounded.
Namely, the following estimates hold.

Lemma 15. Assume that 0 < ¢ < 1 and (2.3), (2.4), (2.20) are valid for
the problem (2.1)—(2.2). Then we have

[ulloe + [102ullco + 022l 0 < 1. (2.21)

Proof. Assume that d = V/(x) and o is given by (2.10). Take the barrier
function
w(x,y) = caexp(ox) where c¢o = 2||f|lco/B1-

Taking into consideration (2.13), (2.2), and (2.4) we have
Lw(z,y) = [[flloc = [Lu(z,y)| n £,

w(z,y) > |u(z,y)] on TI.

Thus, applying Lemma 13 and using the upper bound of the function w,
we conclude that the solution w is bounded uniformly with respect to e.
To prove the estimate for the first derivative on (2, we differentiate the
equation (2.1) with respect to y and introduce the notation v; = dsu. Then
we get
Ly =0of in (2.

Since u(0,y) = u(1,y) = 0, we obtain
v =0 on I'\T,. (2.22)
From (2.1), (2.2), (2.20) we have
Oovy = 0pu=0 on I[i. (2.23)

Now, setting co = 2|02 f||c0/B1 and taking into account (2.13), (2.4), (2.22),
and (2.23), we see that the barrier function w(x,y) = ¢y exp(ox) satisfies
the relations

|[Lvi| < Lw in  £2,
8’[)1
on

ow
<% on I

|lv1] <w on I'\ I, ‘ B
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Thus, by Lemma 14 v; is bounded on {2 by the function w which satisfies
the estimate w < cyexp(o) on 2. Hence, du is uniformly bounded on 2
by a constant independent of €.

It remains to show that the second derivative 0ssu is bounded. To do
this, we twice differentiate (2.1) with respect to y, put vo = dyou, and to
use Lemma 13 with the same barrier function w(z,y) and with the constant
c2 = 2[|022f[|oc/B1. O

Let us consider the following expansion of the solution

u =1y + po + €N. (2.24)

Here vg is the solution of the reduced problem
0 (b(z)vo) = flz,y) in 2, (2.25)
v9o=0 on I[j,. (2.26)

The function pq is the regular boundary layer component

po(,y) = g(y)s(z) exp (—(1 — z)b(x)/¢) (2.27)

where g(y) = —vo(1,y) and s(t) is the cut-off function s € C3([0,1]) satis-
fying (1.9). The solution of the problem (2.25), (2.26) has the form

wles) = g [ e (2.28)

Due to (2.3) we have vy € C?({2). Because of (2.20)
vo(z,y) =0 on Iy,
In view of the definitions of py, g, s and with (2.20) we get
po(z,y) =0 on I'\Ilou, po(l,y)=—vo(l,y) on Loy (2.29)

To estimate the remainder term in the expansion (2.24) we need the
following lemma.

Lemma 16. Assume that € > 0 is small enough and (2.4) hold. Let s(x) €
C3([0,1]) be the cut-off function (1.9). Then the function

o (z) = 11—z

with a fized constant 3 € (1,2) satisfies the inequality

exp(—(1 — x)b(x)/e)s(x) (2.30)

1—=z

Lin > o (é s ) exp(—(1— 2)b(x)/xe) — o (2.31)

for the operator L from (2.6) with the function d = V' (z) and some positive
constants c¢1 and co independent of €.
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Proof. We introduce the notation

By(z,¢) = exp <_M) .

»e

Then we obtain the relation

Lapy = éb(w) (% - 1) s(z) By () + 1;2%2@) <1 - i) s(z)Ey(z, €)

1—
+

xal(x)s(a:)El(x,E) + <1 —
11—z / "
+ (2 + T) (13(%)8 ((E)El(l',é?) + (1 - 1’)3 ({E)El(l',é?)

with bounded functions a1, as, as. First we consider the right-hand side of
(2.32) on the segment [2/3,1]. Remember that s = 1 and s’ = s = 0 on this
segment. Due to the definition of » the coefficients 2/ — 1 and 1/ — 1/
are positive. Since b(z) > B; > 0, the sum of the first and second terms in
the right-hand side of (2.32) has the lower bound

1 1-—
C3 (g-i- J?) El(!L‘78).

2

To estimate the remaining two nonzero terms, we use the inequality
2" exp(—f) < (a/8)" exp(—a), @ € [0,00) (2.33)

which holds for each & > 0, 8 > 0 (see [4]). Setting t = (1 — z)/c and
t = (1—1)?/e?, and using the fact that a; and ay are bounded, we estimate
these two terms from below by a negative constant —cy. Hence we have

Lipy = c3 (é + 1;x> Ey(z,e) —cy on [2/3,1]. (2.34)

Now we consider (2.32) on the segment = € [0,2/3]. The right-hand side
can be expressed as

cor = (@ale) + Zos(e) + Zaolo) ) Brle)

where the functions aq, as, ag are bounded on [0,2/3] x [0,1]. Ones, we use
(2.33) for t =1/e and a = 0,1, 2. This gives

L1 > —c5 on [0,2/3]. (2.35)
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In a similar way for the expression in the right-hand side of (2.31) we obtain
the upper bound

1 1-—
<E + €2x> Ei(z,e) <c¢ on [0,2/3]. (2.36)
Let us set
cp =c3 and ¢y =max{cy, 306+ C5}. (2.37)

Thus, the estimate (2.34) involves (2.31) on the segment [2/3,1]. On the
remaining segment [0, 2/3] from (2.35)—(2.37) we get

1—x

1
Ly > —c5 > csc6 — 2 > 1 (—+ 5
5 €

>E1(m,5) — .

This estimate together with (2.34) completes the proof. OJ

Lemma 17. Assume that € > 0 is small enough and (2.4) hold. Then the
function

Pa(x) = (1 —exp(—=(1 — z)By/e)) (exp(oz) — 1) (2.38)
with the constant o from (2.10) satisfies the inequality

1
(Lho) (z,y) > ZBl expox on {2 (2.39)
where the operator L is given by (2.6) with d = V' (z).
Proof. Introduce the notation

Ba(z,2) = exp <_M) .

9

Then we obtain the relation

Lipy = B?§E2($,€) (exp(ow) — 1) + 20 By Es(x, €) exp(o)

—e0? (1 — Ey(z,¢))) exp(ox) — b%Ez(x,s)(exp(ax) -1)
+ bo (1 — Es(z,¢))exp(ox) + b’ (1 — Ea(z,€)) (exp(ox) — 1).

Due to the upper estimate of b(z) in (2.4) the sum of the first and fourth
terms is nonnegative. We discard it and use simple transformations:
Lipy > (—e0? 4+ bo — |V]) exp(ox)
+ (20By +e0* — bo — |V'|) exp(—(1 — ) By /¢) exp(ox).
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For ¢ < B1/(20?) in view of (2.10) the inequality
()] < bl)o /2.
Then we have
—eo?+b(x)o— |V ()] > iBl’ 20 By+ea®—b(x)o—|V (z)| > 502+%Bl > 0.

Hence we obtain 1
Ly > ZBl exp(ox).
That completes the proof of the lemma.O

Lemma 18. Let € > 0 be small enough and the operator L be defined by
(2.6) with a bounded function d(x). Then the function

P3(x) = (1 + éexp(—(l - x)B1/25)> exp(ox) (2.40)

with the constant o from (2.10) satisfies the inequality

B2
Lapg > 8_512 exp(—(1 — x)B1/2¢) expox

B (2.41)
—|—7 (1+ exp(—(1 —x)By/2¢))expox.
Proof. Introduce the notation
Es(z,e) = exp (—%)
and assume that B B
5§min{ﬁ,8—;}. (2.42)

Then we obtain the relation

Bib, B? B
(Laps) (2,y) = < ot T T”) Es(z,€) exp(ow)

+ (—eo? + bio +d) (1+ & ' Es(z,¢)) exp(oz).

Because of (2.4) and (2.42) the factor in the first term is estimated from
below:

2¢? 4e? e 4g? e T 82

Blbl B% Bla > Bl2 Bla > B%
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The factor in the second term is evaluated from below due to (2.13):
—e0% +bio+d> By /2.

These three inequalities involve (2.41). O
The following Lemma describes the behaviour of the remainder term in
the expansion (2.24) and of its derivatives.

Lemma 19. Let € > 0 be small enough and (2.3), (2.4), (2.20) be valid for
the problem (2.1)—(2.2). Then the remainder term 7 in (2.24) satisfies the
estimates

1lloo < 7, (2.43)
iz, y)] < cs(1+e  exp(=Bi(l —2)/2¢)), (z,y) € 2, (2.44)
1022700 < coe ™t (2.45)

Proof. First we set d = b/(z) in (2.6). Then we get Lu = f. Simple calcu-
lations show that 1 in (2.24) satisfies

Ly = F = aol,y) + Zaa(e,9) Alz,2) + *— (e, ) Az, ) on @ (2.46)

where
A(z) = exp(—(1 — 2)b(z)/e)

and ag, a1, ap are bounded functions on 2. Therefore the right-hand side
of (2.46) is estimated in the following way:

1 1-
|Ln| < 10 + (mg + 12 sz) A(z,¢) (2.47)

with appropriate constants c1g, ¢11, and ¢15. Let us use the barrier function
w(z,y) = c13¥1(2,y) + cra2(z,y)
with constants
c13 = max{ciy,c1o}t/c1 and  cyq = 4(e1g + cac3)/ By
where the functions 1, 12 are given in Lemmata 16 and 17. This yields
[(Ln)(z,y)| < (Lw)(z,y) in 2.

Moreover, we have
w>0=|n on I.
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Thus, all the assumptions of Lemma 16 are satisfied and consequently (2.43)
holds. Together with the estimates for the functions 11, 9 this implies the
inequality

In(z,y)| < w(z,y). (2.48)
Moreover, since
w(0,y) =w(l,y) =0 Vye [0,1],
from (2.48) we have
101m(0,9)| < c15 and  [01n(1,y)| < cree™ " (2.49)

In order to prove (2.44) we differentiate (2.46) with respect to . Intro-
duce the notation ¢ = 011 and set d = 2V’ in (2.6). Then we obtain

([’C) (l‘, y) = a3($, y)

X i (2.50)
+ E—2a4(m,y)A(:1:,6)—|— " as(z,y) Az, €)

where the functions as, a4, and as are bounded on 2. The right-hand side
of (2.50) is estimated in the following way:

(L) (x,y)| < c17 + c1se 2 A, €). (2.51)

Now we take the barrier function w(z,y) = c19¢3(x, y) from Lemma 18 with
the constant c19 = max{8ci7/B%, 2c19/B1}. We get

(L) (@, y)| < (Lw)(z,y) in £,
w>0=[¢| on Iiy, w>|(] on I, UIlqy.

The last inequality follows from (2.49). Thus, due to Lemma 13 we obtain
(| <w on £

that involves (2.44).
In order to prove (2.45) we consider the equality

1
Oan = g(a22u — D220 — D220) (2.52)

which follows from (2.24). Taking into consideration (2.20), (2.27), and
(2.28), we obtain (2.45). O
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2,541 Zit1,j+1

Zij Zit1,j

Fig. 3: The fragment of the triangulation 7.

2.2.2 Construction of the quadrature rule
For the implementation of the Galerkin method we construct an uniform
triangulation 7j. To do this, we consider the grid

x1:1h7 yj:jh7 i,j=0,1,...,n,

with the mesh size h = 1/n for integer n > 2. We denote the set of nodes
by B
Qh = {le = (xlvy])a Zvj = 07 17 LR 777‘}7

the set of interior nodes by
Qp = {25 = (x3,y5), 1,5 =1,2,...,n— 1},
and the set of boundary nodes by
Iy = {2z = (2s,y5), 1=0,1, 5=0,1,...,n; i=0,1,...,n, j=0,1}.

Then the triangulation 7}, is constructed by dividing each elementary rectan-
gle £2;; = [x;, ®i41] X [yj, yj+1] into two elementary triangles by the diagonal
passing from (z;,y;) to (xi41,y;+41) (see Fig. 3).

At each node z;; € (2, we introduce the basis function ¢;; which equals
1 at the node z;;, equals 0 at any other node of 2y, and is linear on each
elementary triangle of 7;,. Denote the linear span of these functions by

H" = span{i;;}1'71,.

With these notations, we arrive at the Galerkin problem: find u" € H" such
that
a(u ") = (f,v") vl e BN (2.53)
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But the solution of this problem is unstable and has poor accuracy be-
cause of the boundary layer component ([9]). In the same way as in one-
dimensional case, we provide the stability and improve the accuracy by the
special approximation of the bilinear form a with the fitted quadrature rule.

Let Ti(;) (or TZ-(;L), respectively) be an arbitrary triangle of 7;, with the
vertices 2;j, Zit1j41 = (Tit1,Yj+1), and zip1; = (Tir1,Y5) ( Zig1y =
(xi,y;+1), respectively) as in Fig. 3. We denote the elementary part of the

bilinear form (2.18) on an arbitrary triangle T' = Ti(;) orT = Ti(;) by
ar(u,v) = / ((ed1u — bu) v + edrudav) df2. (2.54)
T

In principle, freezing the coefficient b on a triangle T is enough to perform
the integration exactly. But the accuracy of this formula is unsatisfactory
because of the boundary layer function pg. Therefore, we try to get another

quadrature rule.

Thus, we apply the three-point quadrature rule on a triangle 7' = Tl-(;)

for the approximation of the bilinear form (2.54):

h2

/ g(z,y)d2 ~ ) (0149(2i5) + 2i9(ziv1,5) + @3i9(Zig1,j+1)) -
T

Then an elementary contribution of the algebraic bilinear form can be
expressed as

h2
(wh,vh) = 7 ((5(91wh — bi(aliwh(zi,j) + Oégi’u}h(ZiJrLj)
(2.55)
+ Ol3iwh(zi+1’j+1)))61’l}h + Eag’whagvh>.

From here on we use the notation b; = b(x;). We choose the weights oy ;
from the following two requirements. Firstly, in order to guarantee the first
order accuracy for smooth functions, the quadrature rule have to be exact
for constant functions. This immediately gives the equation

a1 + o +az; = 1. (2.56)
Secondly, we try to minimize the difference

ar(po,v") — db(ph, o). W e HP, (2.57)
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for the regular boundary layer function pg and its piecewise linear inter-
polant p} € H". For this purpose we put

/ (£0:Ci — biG;) D10 dR2
' (2.58)

h2
= 5 (581@1 —b; (alz’CiI(Zi,j) + azz'CiI(ZHl,j)Oész‘Cil(Zi+1,j+1)) )alvh
for the function
Gi(z) = exp (—(1 — x)bi/e)

and its piecewise linear interpolant ¢/ (z,y) on Ti(;).
To diminish the difference stencil, we put ag; = 0. Thus, for the parame-
ters of the quadrature rule we have the system of linear algebraic equations

1
a1; + exp (0;)ag; +exp (0)az; = — (expo; — 1),
2

o + Qo + az; — 1, (259)

a3; = 0
where o; = b;h/e. It has the unique solution

exp o; 1 1 1
a=————, Qg =—— ———,
L (expo; —1) oy 2 o; expo;—1

With the weights obtained we rewrite (2.55) in the following form:

K2, b,
(00 = G (g gy wlhns = wly expor)one!
+ Eagwhag’uh>. (2.61)

From here on we use the notation v;; = v(z;;) for any function v(z, y).

In a similar way on the triangle Ti(;‘) we obtain the following approxi-
mation of the bilinear form (2.54):

h h , h h2 b’b h h "
i (0" 0") = T (por T Wt —wlin o) T
(2.62)
N owh avh)
E——F7].
dy 0Oy
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To integrate the right-hand side, we use the simple quadrature rules

1
AL ghQ(fijUij + fir1, Vi1 + firrge10i41,541),
T
{

1
) fvd ~ 6h2(fi7j+1vi’j+1 + fit1,jVit1,5 + fit1,j+10i41,541)-
T
This gives the elementary terms of the approximation of the right-hand side
on an element T' € 7p:

i

1
frao@") = ghz(fijvij + fir1,5vit15 + firrj+1vi41,541),
! (2.63)

1

h h 2

oo (V') = Gl (figvig + figeavigen + firrgvavienge)-
ij

Summing the elementary terms like (2.61), (2.62), and (2.63) over all
T € 75, we obtain the approximations of the bilinear and linear forms

a(wh, M) = Z a}f(wh,vh), (2.64)
TeT,
ety = 3 )
TeT),

Now we come to the fitted’ Galerkin problem: find u" € H" such that
a(ul, o) = ") Yol e HY (2.65)

This problem is equivalent to the system of linear algebraic equations

i i bi— b;h
(Lhuh);; = ul <h< bjexpo N 1 > +2€> ot

expo; —1  expo;_1—1 J expo; — 1
b;_1hexpo;_
h 1 p 1 h h
— U4 i S EU; ;1 — €U j4q (2.66)

J exXpo;—1 — 1

:fijh27 i7.j:172a"'7n_17

where uf] =0fori=1,..,n—1and j = 0,nor for j =1,...n—1
and ¢ = 0,n. The parameters {uf] ?;:11 give the solution of the problem
(2.65)
n—1
Uh = Z UqjPig- (267)

i,j=1
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Enumerate the remaining unknowns and the equations in (2.66) from 1
to (n — 1)% in the same way (for example, in the lexicographic order) and
rewrite the system (2.66) in the vector-matrix form

AU =F (2.68)

where

_ (s, h h h h T
U= (“1,1» sy Ut 15U 15 "'7un71,n71)

F= (fh(gol,l)? ceey fh((pl,n—l)a ey fh(gon—lﬂl—l))T'

)

(2.69)

Notice that the matrix A" is irreducible [21], diagonal-dominant along columns
and strongly diagonal-dominant along columns for i = 0, n. Consequently,
AP is an M-matrix and the system (2.66) satisfies the difference comparison
principle and has a unique solution [21].

2.2.3 Properties of the discrete problem. The convergence result

Now we investigate the approximating properties of the discrete problem
(2.65).

Lemma 20. Let u be a solution of the problem (2.1), (2.2) with the condi-
tions (2.3), (2.4), (2.20), and u" be a solution of the discrete problem (2.65).
Assume also that

e<h. (2.70)

Then the estimate

ja" (u" =, i) @.11)
< ch*(e + h+exp(=Bi(1 —x441)/2¢)) Vi,j=1,...n 1

holds.

Proof. Using the expansion (2.24) we have

la" (u" — ! i) < 1" (pig) — Fpi)| + lalu, gi5) — a"(u!, @35))|
< [ (@ij) = fl@ij)l + la(vo, i) — a" (vh, 0i5)]  (2.72)
+ la(po, i;) — a"(pg, i) + €laln, @i;) — a” (", @ij)]-
Here v{, pb,n! € H" are the piecewise linear interpolants of the functions
vo, po, n and i, =1,...,n — 1.
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We evaluate each term in the right-hand side of (2.72). First we estimate
each expression on an elementary triangle T € 7, and then we get the
estimate over the whole support of ¢;;. It is equivalent to the estimate over

1.
Let us take T' = TZ(JI) Consider the expression

h2
Fr = - fij —/Tf%j ds2.
Since f € C?(£2) we use the Taylor formula
[z, y) = fij + hmi(z,y), |m| <e¢1 on T.
This gives
1
|Fr| = |h/ Ty df2| < —c1h3.
T 6

The same estimate is valid on any other elementary triangle T' € supp ;;.
Taking the sum over the whole support of ¢;;, we obtain

|15 (i) = Fpig)| < exh®. (2.73)

Because of different smoothness of the solution in the x- and y-directions,
we expand the bilinear forms (2.18) and (2.64) as a sum in the z- and y-
directions:

a(u,v) = a1 (u,v) + as(u,v),
a"(u ") = b (o) + a0,
Then for the elementary bilinear forms (2.54) and (2.55) we get

ar(u,v) = ayr(u,v) + agr(u,v),

ayp(u*, ") = afp(u, o) + azp(u”, o)
where
arp(u,v) = /T (eO1u — bu) O1v df2,
asr(u,v) = €/T82u8211 ds?,
and

2

? (ealwh — bi (auwh(zij) + agiwh(zi+17j)) )81vh,
h2

abp(wh, o) = ?Eagwhagvh.

aillT(wh7 Uh) =
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According to Lemma 15 the solution is sufficiently smooth in the y-
direction, then it is easy to get the estimate of the difference

|az(u, ij) — ab(u’, @i5)]. (2.74)

Consider the inequality

laz(u, ij) — ab (W', 0i5)| < laz(u, ¢i;) — az(u’, ¢35)] (2.75)
+az(u', i) — al(u’, ;)|

and estimate both terms in its right-hand side.
OnT = Ti(f) we have

A = —% / e (Qou — Doul) df2
T

Use the Taylor expansion at z;;

w(wi, yje1) = u(zi, y;) + hdau(zs, y;) + hPmi (i, y),
Oou(z,y) = Oau(zi,y;) + hma(zi,y)
where || < cg and |m2| < cg on T due to the estimate (2.21). Since u! is
the piecewise linear interpolant of u, T' the equality

82u1(x7y) _ u(xiaijrl)h_ U(fﬂiayj)

= Oou(ws,y;) + hmi(zs, y)

holds. Hence we have |9ou — dou!| < coh. Thus we obtain

|AE;)| S 010€h2.
The same contribution into the error comes from the triangles Tl(j“), Ti(’;) 15
T(l)1 j—1,and TZ( )1 On the triangles T( ) and T(u) _, the derivative Oy¢;;
equals zero and therefore these trlangles do not make a contribution into

the error. As a result, we have the following estimate of the first term in the
right-hand side of (2.75):

laz(u, pij) — az(u’, ;)| < croeh?.

Since the approximation of the second derivative gives the exact expres-
sion for linear functions, the second term in the right-hand side of (2.75)
equals zero on any T' € 7;. Finally, in the y-direction we have

laz(u, ¢i;) — ab(u’, ¢i;)| < croeh®. (2.76)
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To obtain the estimates in the a-direction, on a triangle T' € 7} we
introduce the intermediate bilinear form a{T(u, v) obtained from ajr(u,v)
by freezing the function b(z) at the point a;:

a{T(u,v) = / (e0ru — byu) O1vds2. (2.77)
T
Then for an arbitrary function v we have the estimate

a1 (v, ¢35) — at (v, 03)| < lar (v, 035) — af (v, 05)] (2.78)

+laf (v, 0i5) — af (0, i) + laf (0", i) — a} (0", i),
First with the help of (2.78) we obtain the estimate for v = vg. On

T= TZ-(;) we consider

1
Bi(]l) = a17(vo, Pij) — a{T(vo, pij) = 7 /T(bl — b(x))vp df2.

Expand b and vg in the Tailor series at x;:

b(z) = b; + (x — )b (2;) + hms(x),
vo(z,y) = vo,ij + hma(x,y).

Due to the smoothness of b and vy, the functions 73(x) and m4(x,y) are
bounded on T'. As a result, we have

2
l
Bz(]) = 7?1)0,”[7/(.’51') + h37T5, |7T5| <ec11.

)

In a similar way on Ti(iL ; we obtain the equality

! h
Bz(j]’j = ?UO,i—l,jb/(xi—l) + h3mg, |6 < c11
with the same constant c¢;; independent of ¢, h, ¢, j. Therefore due to the
smoothness of b and vy we have

B + BY, | < 2en1h”.

ij
The same contribution comes from the triangles TZ(?)_l and Ti(iq,j—l' On
the triangles Ti(jy) and Ti(i)l, j—1 we have d1¢;; = 0 and consequently these
triangles do not make a contribution into the error. As a result, we get

|a1('U07S0ij) - a{(vo, %‘j)| < 4011h3- (2.79)
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Next according to (2.78) we evaluate the difference
laf (vo, 1) — af (v, 35). (2:80)

OnT = TZ(J) we introduce the notation

1

GO =L [ (0o 0rsd) bt ) a2
T

Due to the smoothness of vy as well as the definition of a piecewise linear
interpolant, the equality

Yo,i+1,j — Y0,i,j

h

holds. Here |7m7(x,y;)| < c12 on T. Moreover, we have

Ovf(z,y) = = Ovo(xi,y;) + hme(z,y5)

dvo(z,y) = drvo(wi, y;) + hrs(z,y)
where mg is bounded on 7. Hence the estimate
|O1v9 — Blv(ﬂ < ci3h (2.81)
is valid. For functions vy and v{ on T use Tailor expansion in the form

vo(x,y) = vo(wi, y;) + (x — x3)Orvo (2, ;)
(2.82)
+ (y — y;)02v0(24,y5) + hPmg(x,y) where |mg| <eciy on T,
vg(x,y) = vo(@s, y;) + (& — 2:)01vg (24, y5) + (y — y5) 0204 (i, ;).

Due to the inequality (2.81) on T, the similar inequality in the y-direction

0200 — Bav| < c15h,
and (2.82) we get the estimate

|vg — vé| < c16h2.

Then we have

ICD| < errh®(e + h). (2.83)
and T) o1

The triangles T( “) and T.” g ) ._, do not make a the contribution into the error
because of equahty Ovpij = 0

The same contribution comes from the triangles T( )1 47 TZ(? 13
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From (2.83) we obtain
|a{ (vo, ¢i5) — af (v, ;)| < ders(e + h)h?. (2.84)

To complete the proof of the estimate (2.78) for v = vy, we evaluate the
term |a{(v{), wij) —at(vt, pi;)]. On T = Ti(;) we have

b; h?
D) = i(/T vp dS2 — o (@1iv0,i,5 + A2iv0,i+1,5))

bih
= F(Uo,i,j + V0,i41,5 + V0,i4+1,j41 — 3003V0,45,j — 302iV0,i4+1,5)-

Use the Taylor expansion (2.82) for vg ;+1,; and vg,i41,j4+1 near (x;,y;). Since
a1 + Qg = 1, we get
b;h?
Dz(;) = ZT((Q - 30[21')811)072')]' + 821)0,1"3') + h37T9’Z'j

. . . 1 .
where 79 ;; is a function bounded on 7. In a similar way on Ti(_)1 ; we obtain
the expression

b;h?
D§l_)1,j =~ ((2 = 3a,i—1)01v0,i—1,j + O2v0,i—13) + h*T9 -1

with the value g ;_1 ; of the function m9 bounded on 7.
Consider the function

~ exp(t) 1
alt) = (<exp<t> D t_) '

This function approaches zero as ¢ — 0 or t — 4oc0. Since it is continuous
on the interval (0, 00), it is bounded

la(t)| <ci9 on (0,00)

with a constant c19 independent of h, €, x, t. Taking into account

_ (@)
810@(58) = by (33) Ol(hbl (ZE)/E),

(2.4), and the smoothness of b and its derivative, we get

0102 ()] < el [|oo/ Bi.



The finite element method for convection-diffusion 61

Since the functions b, as(x), d1v9, O2v9 have bounded derivatives with
respect to x, by the mean value theorem we get

|D l) + D(l 1j| S 020h3.

The same contribution comes from the triangles TZ( ]) 1 T-(u)1 j—1- The tri-

angles T ) and T(l ._, do not make a contribution into the error because
of the equahty o gpw = () As a result, we get

laf (v], ¢ij) — alt(vh, pij)| < 2ca0h®. (2.85)

From (2.78) together with (2.79), (2.84), and (2.85) we obtain the esti-
mate of the second term in (2.72)

|a1 (Uo, 901']') — a’f(v(l), (Pij)l < 2621h2(h + E). (286)

Now let us obtain the similar estimates for the pair py and p{. To do
this, we consider the third term in (2.72). On T = Ti(j) we have

1
B = ar(po. i) = ahon0) =~ [ (b= ba)pnae
Since |b; — b(z)| < h||V ||oo on [24, Ti11], We get
B0 < e [ Il (2.87)
T

Let us examine two variants of the behavior of the function g(y) = —vo(1, ).

First assume that g(y) changes its sign on the segment [y;, y;+1]. It involves

lg(y)| < hllg’ll. on [yj,yj+1]. Therefore |pg| < co3h on T and we have
IED| < eaah®. (2.88)

Next we assume that g(y) does not change its sign on the segment [y;, y;+1]
and is, for example, nonnegative. Then by the mean value theorem we get

h2 * *
[ mlag = [ mi2 =" () (2.89)
T T
where (7%,y*) € T. Because of (2.4) we obtain

po(7*,y") < co5 exp(—(1 — z;41)B1/¢). (2.90)
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Combining (2.87), (2.88)—(2.90), we get the estimate
|El(jl)‘ < 626h2(h + exp(—(l - $i+1)Bl/5>)~

The same contribution comes from the triangles Ti(i)l, s Tigq;)_l, and Tz(fi o1

On the triangles Ti(j"), Tl-(i)L j—1 we have 01¢;; = 0 and consequently the
contribution of these triangles equals zero. As a result, we have

la(po, pij) — a’ (po, i) < carh®(h + exp(—=(1 = zip1)Bi/e)).  (2.91)

Now we evaluate the difference af (po, ¢i;) — al(pl, ¢ij). Let us take
T = Tl(jl) and introduce the function

p(x,y) = 9" (y) exp(—(1 — 2)b; /e)
where ¢! is the piecewise linear interpolant of g. According to the construc-
tion of the quadrature rule, we have
af (p. i) = al (95, 35).

Thus, on Tz(jl) we obtain the representation

l ~
G = al 1 (po, i) — dlr(ph. piy) = alr(po. viy) — alp (B, i)

1

(2.92)
=-7 /T (€d1(po — p) — bi(po — p)) dS2.

Taking into account the behavior of the functions pg and p we conclude that
the estimate of G;; is worst near = 1. Consider this case in detail. Assume
that x; > 2/3. Then we get

lpo — Al = lg(y) exp(—(1 — 2)b(x) /e) — g (y) exp(—(1 — z)b; /e)|
< |g(y) (exp(=(1 = z)b(x)/e) — exp(—(1 — x)bi/e)) |  (2.93)
+g(y) — g"(y)| exp (—(1 — z)b; fe) .

To estimate the first term we take into account the fact that the function
texp(—t) is bounded for ¢t € [0,00) and use the mean value theorem. Then
we obtain the upper bound

caghexp (—(1 — x41)B1/2e) .

Since the interpolant g’ approximates g with the second order accuracy, we
have the estimate of the second term in (2.93):

Ipo — ﬁ| S CQQh (h + exp (—(1 - $i+1)B1/2€)) . (294)
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Using similar reasoning for the first derivative, we get

) o1

0190 — 011 = |g<y> ( ) =" ) exp ({1 o))

g
g ()% exp (~(1 — a)hi/2)|

< " ) exp (~(1 — b)) — exp (~(1 — )b /2)|
(2.95)

> (gf)ble) — o' (w)0)

+ exp (—(1 — )b /e)

+pww%w1‘xemw—u—xw@va

< 6302 exp (—(1 — z;41)B1/2¢) .
Combining (2.94) and (2.95), we have
G| < exih? (h+exp(—(1 — i41)B1/2¢))  for z;>2/3.  (2.96)
Now assume that z; < 2/3. Then we have
exp(—(1 — 2)by(z*)/e) < c306% < ez3h? for all a* € [x;, 2i41].
This gives

lpo — ol < l9(y)|s(x) exp(—(1 — z)b(z)/e)
+ 19" (v)|s(z) exp(—(1 — @)bi /€) < caah?,
|01p0 — 91| < 35 (l9(y)]s(x) exp(—(1 — 2)b() /¢)
+ 19" () s(2) exp(—(1 — )bu/2)) < exoh.

Therefore for z; < 2/3 the following estimate is valid:
|G£;)| < 037h3.

Thus, (2.96) holds for all ; € (0,1). The same estimates are valid for the

triangles T(l)1 o Ti(?) 1 T.(u)1 j—1- The contribution from the triangles Tﬁy)

and T; ¢ )1 _j—1 1s zero since the derivative 91 ¢;; equals zero on these triangles.
Therefore we obtain

laf (po, ¢ij) — al(ph, ij)] < essh®(h + exp(—(1 — 2441)B1/2¢).  (2.97)
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Finally, we need to obtain the estimate for the last term in the right-hand
side of (2.72) for the functions n and n’:

a1 (n, pi5) — al (0", i5)] -

OnT = Ti(;) we consider

1
HY = arr(n, 05) — alp(n, i) = ~ / (bi — b(x))nds2.

T

Because 7 is bounded on T according to Lemma 19 and b is sufficiently
smooth, we get

‘Hi(;)‘ < coh®.

The contribution from the other triangles with the vertex z;; = (z;,y;) has
the same order. Therefore we have

‘m(n, ij) —al(n, tpij)‘ < desgh?.

Now we estimate the difference ‘a{(n, ©ij) — a{ (0", ¢i;)|. On T = Ti(;) we

have 1
) =-< / e(Oin —ou') —bi(n —n")) de.
J h )y
Due to (2.44) we get
01| < ca0 (1 + e exp (=B (1 — z411)/2¢)) on T. (2.98)

Because of the Lagrange theorem [017!(z,y)| = |0in(t,y;)] on T. It in-
volves the same estimate as (2.98) for both expressions. Under (2.70) we
obtain

eloin — 0’| < care (L4 exp (—Bi(1 — zi41)/2¢)) - (2.99)

Further, in order to estimate the difference n — n’ on T we use the Taylor
formula for 7 in the form

n(@,y) = nij + (y — y;)0an(wi, y;) + hmio(x, y;)- (2.100)
Here because of (2.44) and (2.45) the function ¢ satisfies the inequality
Imi0] < cas (L +he™ + e Lexp (—Bi(1 — mi41)/2¢)) (2.101)
on T'. Moreover, we have

Ni+1,5 — Mij
h

Mij+1 — Mij T

! (e,9) = mi + (z — 7) (- y) BT o
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Using (2.100) for n;41,; and 1; j+1, we obtain
In—n"| <cash (1+e 'h+e  exp (—Bi(l — 2441)/2¢)). (2.102)
Combining (2.99) and (2.102) we get on T'

|I | < C44h— (6 + h + exp( Bl(l — SL‘Z‘+1)/2€)). (2103)

The same estimate is valid for the trlangles T() T T(u)1 j—1- The

1,50 ~4,7—1°
contribution from the triangles T ) and T _; equals zero. Therefore we
have

h2
laf (n, pi5) — al (", i) < €45 (e +h+exp(=Bi(l —xit1)/2¢)). (2.104)

It remains to evaluate the difference

laf (0", pi5) — dl (", 03] (2.105)
OnT = TZ(J) we have
b; h?
‘]i(Jl’) = E(/ Tdo - (alﬂlw + a2ifiy1,5))
T
bhh
= 6 (771] + i1, T i1, 41 — 31N — 30421’1714,_1,])

Use the Taylor formula in the form (2.100) for n,11; and 7;41 j+1 and the
equality ay; + ag; = 1. Since aq;, ag;, and b(x) are bounded, we have

bh

Ji(;) = o B2 m1(x,y)

with the estimate of 711 (x,y) similar to (2.101). Considering (2.105) on the
triangle e

ij—1s We get

“ h?
EAN |<C46?(E+h+exp( Bi(1 — zi41)/2¢)).

The triangles T( % j—1 and T, j , make the same contribution. The contri-

bution of the triangles Tl(J and Ti(_)L j—1 equals zero.
Therefore for (2.105) we get

alp(n, i) — dlir(n', 0ig)
, (2.106)

h
< car— (e+h+exp(=Bi(l —zit1)/2¢)).
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Combining (2.73), (2.76), (2.86), (2.97), and (2.106), due to (2.70) we
obtain the estimate (2.71).0

The next result gives the barrier functions to estimate the right-hand
side of (2.71).

Lemma 21. Let us assume that
e<ch (2.107)

with a constant c,. There exist the mesh functions ©" and " on (2, with
the properties

" <y in £, (2.108)
|Yh <esh in o 2 (2.109)

such that
Lo > h% im0y, (2.110)
©">0 on Ty (2.111)

and

L™ > h2exp (—=Bi(1 — zi41)/2¢)  in §2, (2.112)
Yh>0 on I (2.113)

Proof. Consider the expression

1 [ biexp(si)  bi_1exp(si_1)
( )

h

exp(si) =1  exp(si—1) — 1

(2.114)

where s; = b;h/e. It can be thought as the difference of the values of the
function f(s) = (sexp(s))/(exp(s) — 1) at neighboring nodes of the grid.
Then by the mean value theorem we have

e | s;exp(s; si—1exp(s;_ £ i}
h? exp(si))()l B exp:(sfl() 711) < 5 f1(s7)]si = i
(2.115)
Bih Bsh
< fi(s*)' (2*) < 5 where s* € [Tl’ %} .

We take into account the estimate

h
|5i — 5i—1| = g|bz — bz'_1| < gb/(I*)h7 AN [zi_l,xi].
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Thus, the difference (2.114) is bounded.
Now we consider the expression

1 b; B bi—1
h \exp(s;) —1 exp(si-1)—1/

In a similar way we introduce the function f(s) = s/(exp(s) —1). Using the
mean value theorem we get the estimate for (2.116)

(2.116)

5 S Si—1 € prowx
- - <3 i~ Si—
h? |exp(s;) —1 exp(s;i—1) — 1’ - h2f (s7)lsi = si1]
P (2.117)
< f(8*) (%) < cg where s** € {—1, L} . o€ [mimt, T
£ €
Thus, the difference in (2.116) is also bounded.
Put o = 4(c5 + cg)/ By and introduce the function (" by
ho_ph
gpg,j =0, % =ocexplox;), i=1,..,n; Vj=1,..,n—1.

We want to show that ¢ satisfies the conditions (2.110), (2.111). Rewrite

1
ﬁthoh in the form
~ biga exp(si—1) ho bi—1 N b; exp(s;) "
hexplorn) — 07 A iemp(or = 1) e - 1) 72
b; h )
"~ h(exp(s;) — 1)90“'173"

Rearranging the terms in (2.118), we have

b exp(si) h h bi h h
h(exp(s;) — 1) (%j %‘4,;‘) h (exp(si) — 1) (%‘H,j %‘j)

1 ( b; exp(s;) bi_lexp(si-1)>

- — h
exp(s;) =1  exp(si—1)—1/)""

-1j

(2.119)

h 12

_l bz _ bi—l h
h\exp(si) — 1 exp(siq) —1) 7

Take into consideration the inequalities exp(—b;h/e) < exp(—Bih/e) <1/2
for ¢; = B1/In(1/2) in (2.107) and exp(ch) > 1. Then the difference of
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two first terms in (2.119) has the lower estimate

PODE) exp(om) i explorin)
— Y _gexp(ox;) — ————0 exp(ox;
exp(si) —1 b eXp(si) 1 p 41

b; ’
= #ﬁ)(s_)la (exp(ox;) — exp (ox; + ho — b;h/e))

1 1
> iabi exp(ox;) > 5031 exp(ox;).

In view of the definition of o the first term in (2.119) is twice as much
as the remaining two terms, hence the conditions (2.110), (2.111) are valid.

Show that the condition (2.108) holds for the function ¢". From the
definition of ¢" we have

ho_ h i i
w = UZexp(U:vk) = gexp(ox;) Zexp(—k‘ah).
k=0 k=0

Then " has the following representation

Lp?j = hoexp(ox;) Z exp(—koh).
k=0

The sum in this expression is the partial sum of a geometric progression,
hence we get the estimate
ho exp(oz;)
1 —exp(—oh)’
For sufficiently small & the following inequality holds:
ok
1—exp(—oh) —
It can be proved using the Taylor expansion of the function f(t) = 1 —
exp(—t) at zero. Then we have ¢f; < 2exp(ox;) on 2. The proof of the
properties of ¢!} is complete.
Now consider the function 1" defined by

h
Pij <

ho_ b
UTHJ =exp(—Bi(1 —2i41)/26) Vj=0,1,..,n; ly=0.
In order to prove the properties (2.112), (2.113) we consider
iLhwh __ bia exp(si—1) no
h? h(exp(s;i—1) — 1) J

(2.120)

bi—1 b; exp(s;) - # -
* (h(exp(sil) -1) + h (exp(s;) — 1)) ij h (exp(s:) — 1) i1,
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For convenience we rearrange terms:

_biexp(si) o om _unoy_ b e
h(eXp(Si)_l)( b~ Vi) h(exp(si)—l)( )

1 ( b exp(s;) bi_lexp(si_l)) h (2.121)

exp(si) =1  exp(si—1) — 1

_1 bi _ bi e
h \exp(s;) —1 exp(s;)—1/) """
Take into consideration the inequality exp (—Bih/2e) < 1/2 which holds

for ¢ < h By/In4. Then we estimate the difference of the first two terms in
(2.121):

I i—1,j

h

b; exp(s;) b;
4@Xp(8i) — 1 exp(—B1(1 — xi41)/2¢e) — W exp(—Bi1(1 — m;42)/2¢)

- %exp(—&(l — Tiy1)/2€) (1 — P (B2—leh - bih))

Y

1
§bl exp(—Bl(l — l‘i+1)/2€) Z C10 eXp(—Bl(l — Z‘i+1)/26)

with the constant ¢1p = By/2.

The coefficients of 1/’?714‘ and wihﬂ,j are bounded on (2, due to the
estimates (2.115) and (2.117), respectively. Since the functions 1/)?_1,]' and
wih-',-l,j themselves are of the first order with respect to h, we obtain the
estimate (2.112).

Next we examine the condition (2.109) for ¢". In the same way as for

the function ", we have

Zhj = z/Jgj + hexp(—B1(1 — x;41)/2¢) Z exp(—kBih)/2¢)
k=0
1

1 — exp(—B1h/2¢)

< hexp(—Bi(1 — z441)/2¢)

< cghexp(—Bi(1 —x;41)/2¢) < coh on (2.

Thus, the function 1" satisfies (2.109). This completes the proof. [J
Finally, using Lemmata 20 and 21, we formulate the main result.

Theorem 22. Assume that (2.4), (2.20) hold. Then there exist constants
ho and ¢, independent of h and & such that ¥V h < hg and for € < h the
solution u" of the problem (2.65) satisfies the estimate

max [u — u"| = |[u! —u||oon < c1h (2.122)
O
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where u is the solution of the problem (2.18), (2.19).
Proof. Introduce the function
¢" = coh" + cay)”
with ¢" and ¥" from Lemma 21. From (2.110) — (2.113) we get
|L"¢"| > h?(h+4exp(—Bi(1 —x41)/2¢)) in 2,
|o"| >0 on I}.
Then by Lemma 21 the inequality
|p"| < csh on £

holds. In view of the definition (2.66) of the operator L" and by Lemma 20
we have

|Lh(uh - uI)ij| < c5h2(5 + h+exp(—(1 — 2;,41)B1/2¢))
< LMy Yij=1,..,n—1
Therefore
(23, y5) — u(wi, ;)| < coh
forl<i<n—-land1<j<n-1.Fori=0,nand j =0,..,n or

for j = 0,n and i = 0,...,n the difference u"(x;,y;) — u(z;,y;) equals zero.
Since u! (z;,y;) = u(x;, y;), we have (2.122). O

2.3 Counstruction of the method for the problem with regular
and parabolic boundary layers

In this section we reject the restriction (2.20) and consider the convection-
diffusion problem whose solution has regular and parabolic boundary layers.

2.3.1 Properties of the differential problem.
Consider the problem (2.1), (2.2) under the conditions (2.3) — (2.5).
To describe the behaviour of the solution for small €, we use the following
expansion of the solution

u=1u+po+en on (2. (2.123)
Here ug is the solution of the ’partially reduced’ problem

Lygrug = —€022ug + 01(bug) = f in (2, (2.124)
up =0 on Iy, Ul},. (2.125)
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The function pq is the regular boundary layer component

po(@,y) = g(y)s(x) exp (=(1 — z)b(z)/¢) (2.126)

where
9(y) = —uo(l,y)  on Loy (2.127)

The cut-off function s(z) € C*[0,1] was introduced in (1.9). The function
up in (2.123), unlike the analogous component in (2.24), is not smooth in
the y-direction. But it still is sufficiently smooth in the z-direction.

The operator L,,, satisfies the comparison principle. We formulate it
for the family of differential operators

‘Cparv = —£099v + bO1v + dv (2128)

where b(z) satisfies the conditions (2.3), (2.4) and d(z) is a sufficiently
smooth bounded function which will be specified further in each individual
case.

Lemma 23. Assume that ¢ > 0 and (2.3), (2.4) hold. Assume also that
u,w € C?(02) satisfy the inequalities

[Lpart] < Lpgrw in 12, lul <w on I, UIy. (2.129)

Then we have -
lu] < w on {2 (2.130)

The lemma can be proved in the same way as Lemma 13 for the operator
L.

The following lemmata give some estimates of the functions from (2.123)
and of its derivatives, that are requred to construct and to investigate the
discrete problem.

Lemma 24. Assume that € > 0 is sufficiently small and (2.3), (2.4) hold.
Then the estimate

‘ du(z,y)

< ~if2 - 5 @
5 ‘cl(l+s B(y)), i=1,23, on £ (2.131)

is valid where B(y) = exp (—yy/+/€) +exp (—y(1 — y)/\/€) with a constant
v > 0.

Proof. Set d(xz) = b/(x) for the operator £ introduced by (2.6). Let o
be defined by (2.10). Assume that e satisfies the condition (2.12). For the
barrier function

w(z,y) = ¢z (1 —exp (—yy/Ve)) exp(ox)
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we put v = /B1/2 and ¢z = 2| f]|eo/B1. According to (2.13) we have

(Lw)(x,y) = c2v* exp (—y/VE) exp(ox) + (=0 + ob(x) + d(x)) w(z, y)
[(Lu)(z,y)| for (z,y) € 2,
w(z,y) > |u(z,y)| =0 for (x,y) el

%

Thus, applying Lemma 13 we see that the solution « is bounded on 2.
Besides, due to the equality w(z,0) = 0 on the boundary y = 0 the
estimate

|82u(z, 0)] < Byw(z,0) < cze™ /2. (2.132)

holds. To prove the same estimate on the boundary y = 1 we take

w(z,y) = ca (1 —exp (—(1 —y)/Ve)) exp(ox)

as the barrier function and use Lemma 13. In a similar way as (2.132), we
get
|Ou(z,y)| < Dow(x,y) < cse™ M2 for (x,y) € Iy (2.133)

In addition, because of (2.2) we have
|O2u(z,y)| =0 for (x,y) € I U Loyt (2.134)

To prove the estimate (2.131) for j = 1 we differentiate the equation
(2.1) with respect to y. We introduce the notation v; = dau. Then we get

Lvr =0sf in £

Choosing a sufficiently large positive constant cs we see that the barrier
function

w(z,y) = co (1 + 6*1/23(1/)) exp(o)

satisfies the relations

(Lw) (x,y) = cgv’e 2 B(y) exp(oz) + (—e0® + ob(z) + d(z)) w(z,y)
Z [(Lv)(z,y)| for (z,y) € 2,
’LU(I’,y) > |’Ul(xay)| for (‘T’y) el

Thus, for dou Lemma 13 yields the estimate similar to (2.131) for j = 1 on
0.

To prove the estimate (2.131) for j = 2 we twice differentiate the equa-
tion (2.1) with respect to y. Set va = Jyou. Due to (2.2) vz = 0 on the
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boundary I3, U I,y Since 011w = 0 on I}, because (2.1), and (2.3) we
have

[va| = [Oa2u| = | — Or1u + e H(b(2)u +udib — f)| < cre™ ! on I}, (2.135)
As before, the barrier function

w(z,y) = cs (1 +e ' B(y)) exp(ox)
satisfies the assumptions of Lemma 13

(Lw)(z,y) = [(Lv2)(z,y)| for (z,y) € L2,
w(z,y) = |v2(z,y)| for (2,y) €I
Consequently, for j = 2 (2.131) holds on 2.
Tt remains to prove (2.131) for j = 3. We differentiate the equation (2.1)
with respect to y three times and set vg = Jooou. At first, we estimate the
value of dpv3 on the boundary. From (2.2) we get Oovs = 0 on I, U Ty

Then differentiating the equation (2.1) with respect to y twice, we use the
inequality similar to (2.135). In view of (2.131) for j = 2 we have

2

lva| <cge™ on  I,.

The barrier function
w(z,y) = 1o (1 - 6‘3/23(?;)) exp(ox)
satisfies

(£U3)(l‘,y>| for (m,y)EQ,

(Lw)(z,y) > |
> |'U3(CE,y)| for (m,y) GFinUFout»

w(z,y)
aw(xa y) 8”3 (l’, y)
> .
5 2 o for (z,y) € I,

Applying Lemma 14 we complete the proof of the estimate (2.131) for j = 3
on 2. The lemma is proved. [J

Lemma 25. Assume that € > 0 is small enough and (2.3), (2.4) hold. Then
the estimates

8ku0
‘ Oxk <c, k=0,1,2 (2.136)

hold.
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Proof. Assume that o is given by (2.10) and ¢ satisfies (2.12). We derive
(2.136) by the comparison principle for the operator £,q, (Lemma 23).
Set d = V', then the barrier function

w(z,y) = coxexp(ox) (2.137)
with the constant ¢y = 2|| f]|oo satisfies the relations

(Lparw)(x,y) = c2b(z) exp(ow) + (d(z) + ob(x)) w(x)
> (‘CPGTHO)(:L":‘/) for (x,y) € ‘Q’
w(z,y) > |uo(z,y)| for (z,y) € Iy Ul,.

Using Lemma 23, we see that ug is bounded on 2.

From (2.125) it follows that 0up = 0 on I, and O22up = 0 on I5,. Due
to this together with (2.3), (2.4), and (2.124) the derivative 0;uq is bounded
on[':

Oug(z,y) <cz for (z,y) €l (2.138)

Now we derive (2.136) for k& = 1. Differentiate the equation (2.124) with
respect to x and introduce the notation v; = d1ug. Setting d = 20’ we have

(Lparvl)(xay) = 61f — Uob” in (2.

In view of (2.138) for vy, the barrier function w from (2.137) with the
constant ca = 2(]|01uolloo + ||uod” ||c) satisfies the assumptions of Lemma
23. Consequently, 011 is bounded on f2.

To prove (2.136) for k = 2 we differentiate the equation (2.124) with
respect to x twice and introduce the notation vy = d1ug. Setting d = 3b’ we
get

(ﬁpm-vg)(l‘, y) = 81f - b”81u0 - UQb/” in £.

Consider this equation on I5,. Taking into account (2.3) and the fact that
ug and Oiug are bounded, we get the estimate

|O111u0] = |O1v2| < ey for (z,y) € .

From this together with the equality d111uo = 0 on I, it follows that 0ivs
is bounded on the whole boundary I'. Then the barrier function w with an
appropriate constant cs satisfies the assumptions of Lemma 23. Hence d11ug
is bounded on (2. The proof is complete. O

Lemma 26. Let € > 0 be sufficiently small and (2.3), (2.4), (2.20) be valid
for the problem (2.1)—(2.2). Then the remainder term in (2.123) satisfies

[Mlloe < 1, (2.139)
|o1n(z,y)| < ca(1 + e texp(=Bi(1 —x)/2¢)) on 0. (2.140)
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Proof. First we set d = V/(x) in (2.6) so that Lu = f. In view of (2.124),
(2.127), and the estimate (2.136) for j = 2, by an elementary calculation
we show that 7 in (2.123) satisfies

(£1)(,9) = ao(9) + Zaa(,p) Al )

1—=z
22

(2.141)

+ as(z,y)A(z,e) on 2

where A(x) = exp(—(1 — z)b(z)/¢) and ag, a1, az are bounded functions
on {2. In a similar way as in Lemma 19, the right-hand side of (2.141) is
evaluated by

1
|Ln| < 3+ (c4g +¢s E,f) Alz,e). (2.142)

Let us use the barrier function

w(w,y) = c1391(z,y) + craha(z,y)

where the functions 11, 15 are taken from Lemmata 16, 17 with the con-
stants from Lemma 19. This gives

[(Ln)(z,y)] < (Lw)(z,y) in 2.

Moreover, we have
w>0=|n on I.

Thus, all the assumptions of Lemma 16 are satisfied. By this lemma, 7 is
bounded on f2.
Besides, since

w(0,y) =w(l,y) =0 Vye [0,1],

we have
|01m(0,y)| <cs and |O1n(1,y)| < cre L. (2.143)

In order to show (2.140), we first differentiate (2.141) with respect to x.
Denoting v = 011 and setting d = 2V’ in (2.6), from (2.136) for j = 3 we
obtain the representation

(Lv)(x,y) = as(z,y) (2.144)

1 T
+ E—2a4(:E,y)A($,€) + 23 a5(x, y)A(IE,E)
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with functions a3, a4, and a5, bounded on (2. The right-hand side of (2.144)
can be estimated in the following way:

[(Lv)(z,y)| < cs + coe 2 Az, ).

Now choosing the barrier function w = ci9¥3 from Lemma 18 with an
appropriate constant cjg, we get

|(Lv)(z, )| < (L)w(z,y) in 2,

w>0=|v] on Ii,, w>|v] on I, UIyy.

The last inequality follows from (2.143). Thus, due to Lemma 13 we obtain
v <w on £

that involves (2.140). O

2.3.2 Counstruction of the fitted quadrature rule.

For the approximation of the regular boundary layer we use the tech-
nique considered in the previous section. For the approximation of the
parabolic layer we construct the special grid based on the extension method
(see [35], [36], [5]).

First we put h = 1/n with even integer n > 2 and take the uniform grid
in the z-direction:

x;:=th, 1=0,1,...,n.

Next, in the y-direction we algorithmically introduce the graded grid in the
y-direction:

0, for j7=0,
Coh

1+e 2 exp(—vyyj—1/vE)’
1—yn—j, for j=n/2+1,..,n

y] = yj*l + fOr J = 1, ...,n/27 (2.145)

The constant ¢ satisfies the condition y,, ;» = 1/2. Unfortunately, this leads
to a nonlinear equation in cg.
We define the mesh size in the y-direction by

hj =Y —Yj—1, ] = ]., ey N (2146)
We denote the set of nodes by

‘Qh:{zij:(zivyj)a i,jzoal,"'an}a
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2,541 Zi41,5+1

Zij Zit1,

Fig. 4: Fragment the trangulation 7.

the set of interior nodes by
Qn ={zij = (xi,y5), 14,7=1,2,...,n—1},
and the set of boundary nodes by
Iy, ={z; = (%;,y;), i=0,1land 5 =0,1,...,n;4=0,1,...,n, and j = 0, 1}.

Then the triangulation 7}, is constructed by dividing each elementary rectan-
gle 2;; = [x;, xit1] X [yj, yj+1] into two elementary triangles by the diagonal
passing from (z;,y;) to (i41,y;j41) (see Fig. 4).

For each interior node z;; € {2, we introduce the basis function ;; which
equals 1 at the node z;;, equals 0 at any other node of £2;,, and is linear on
each elementary triangle of 7;. Denote the linear span of these functions by

H" = span{cpl-j}zj;ll.

With this notations, we formulate the Galerkin problem: find u" € H" such
that
a(u™,v) = (f,v) VoveH" (2.147)

As before, in order to ensure the stability and to improve the accuracy
of the method, we construct the special quadrature rule that provides good
approximation on the smooth and boundary layer components of the solu-
tion. Since this technique was described in detail in Section 2.2.2, now we
sketch the broad outlines of the construction of the quadrature rule on the
nonuniform grid.

Let Ti(jl) (or Ti(;‘), respectively) be an arbitrary elementary triangle of
'Th with the vertices Zi,jy Zi41,541 = (131'+1, yj+1), and Zi41,j = (iE'H-layj) (or
Zit1,j = (%4, Yj+1), respectively) as in Fig. 4. We consider the bilinear form

ou ov Ou dv
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h

Its approximation by piecewise linear functions w”,v" € H", for example,

on the triangle Tz(Jl) has the form

hh; o™
al o (w", ") = ;H ( (ebi(ariw” (zij) + aniw (zi41,))) S
Y (2.149)
N 3_Wa_vh)
€ 90 oy )

As before, the weights aj; and ag; are chosen in such a way as to sat-
isfy two requirements, namely, to guarantee the first order accuracy for a
smooth solution, and to reduce the error of approximation of the difference
ar, (po,v") — a}, (ph,v") for the regular boundary layer component py and
its piecewise linear interpolant p) € H" on each element T}; € 7},. The first
requirement involves the equation

a1 + ag; = 1. (2.150)
To satisfy the second one, we demand that the equality
ar,; (G, ") = af,, (¢, 0) (2.151)

be valid for the function ¢;(z) = exp (—(1 — z)b;/¢) and its piecewise linear
interpolant ¢/ (x,y) on Tj;. Solving the system (2.150), (2.151), we get the
unique solution
exp o; 1 1 1
i L = - 2.152

i (expo; —1) oy’ a2 o; expo; —1 ( )
where o; = b;h/e. With this weights we obtain the following approximation
of the elementary bilinear form (2.149):

b (W, u") = Shh, (7@ (W, —wh expon 2
anj) w,v) = o/ Mj+1 expo; — 1 Wi j — W;j €XP 0 p
(2.153)
N dwh 81}”)
e——— ).
dy Oy
In a similar way, on the triangle Ti(]y) we have
aTi(;t) (w , U ) - 5 j+1 (m(wi+l’j+l - wi’j+1 expai)—x
(2.154)
N owh th)
e——).
9y 9y
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To integrate the right-hand side, we use the simple piecewise constant
approximation. This gives the following approximation of the linear form

;m( ") = ghhi+1(figvig + firrvirrs + firrgavicng),
(2.155)

h h
T<u>( ) = ghhiv1(fijvij + figerviger + fivrgravienge)-

Summing (2.153), (2.154), and (2.155) over all the triangles T' € 7p,, we
obtain the approximations of the bilinear and linear forms

a(wh, o) = Z al (wh, o"), (2.156)
TeTy,
=Y M. (2.157)
TeTy,

Now we come to the fitted Galerkin problem: find u” € H" such that
a(u, o) = ") Vol e H". (2.158)
This problem is equivalent to the system of linear algebraic equations

(Lhuh)ij =

’U,? hj + hj+1 b; exp o; n bi—1 4 eh i n 1
J 2 exXpo; — 1 exXpo;—1 — 1 hj hj+1

o hit+hin b; n o hj4hjp1 bi—iexpoi_y
Uit1,j B i—1,j

_ 2.159
expo; — 1 Yi-1,j 2 expo;_1 — 1 ( )

h h hj +h
h h J+1
Ui 1€ Uiy = fi;j 2

T hy ST Ry

h, 4,j=12,...n—1;

u?j = 0for¢ = 1,.,n—1and j = O,n or for j = 1,...n — 1
and i = 0, n.

The parameters {u give the solution of the problem (2.158)

1]1

e
M=) i (2.160)

ij=1

Eliminate the boundary unknowns and enumerate the remaining un-
knowns and the equations from 1 to (n — 1)? in the same way (for example,
in the lexicographic order). We obtain the shortened system

AU =F (2.161)
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where
(u}ll,lv sy uillmfla ug,lv sy uzfl,nfl)T
= (fh(gpl,l)v sy fh(<p1,n—1)7 sy fh(<p7z—1,n—1))T'

U ;
F

Note that the matrix A" is irreducible [21], has positive diagonal elements
and non-positive off-diagonal ones. Then this matrix is diagonal-dominant
along columns and strictly diagonal-dominant along some of them. There-

fore A" is an M-matrix. Hence, the system (2.159) satisfies the comparison
principle and has unique solution [21].

2.3.3 The properties of the discrete problem

Now we investigate the discrete problem. The following lemma estab-
lishes the error of the approximation of the problem (2.1), (2.2) by the grid
problem (2.159).

Lemma 27. Let u be a solution of the problem (2.1), (2.2) under the condi-
tions (2.4), (2.3), (2.70), and u" be a solution of the discrete problem (2.159).
Then the estimate
| (Lh(uh - UI))””
(2.162)
<cih(hj+hjs1) (e +h+exp(—(1 —ziy1)B1/2¢)) Vi, j=1,..,n—1

holds.

Proof. Consider the operator L" as the sum of two operators of difference
differentiation with respect to x and y

L' = Liv+ Lhv (2.163)
where
bi exXp o; bi,1 bz
L), = i — 1
( 1v)w <<exp0i—1+exp0i_1—1)v] expai—lvH’J
(2.164)

_biiexpoicy N\ hj+hin
expo;_1 — 1 =L 2 ’

1 1 h h
L), =c¢h (— + —) Vij — E—Vj j_1 —E—V; 11, 2.165
( 2 )” h; hj1 ’ h; -1 hjt1 S ( )
,7=1,...,n—1.
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Using the Tailor expansion at (z;,y;) € (2, we have

1
(Lgu)ij i eh(hj 4 hji1)022u(xi, y;)
—¢h (h?ﬂ'l(ﬂfz,y) + h?+17r2(xiay)) .

Because of (2.131) the inequalities

mi@a )l < e (1+72B(y;0)) ma(an )] < s (1+272B(yy))
for y; <1/2,
@iyl < ea (1+72B(y,) ) s Ima(a )l < es (1+72Bly;00))
for y; > 1/2

hold. In view of the definition (2.146) of the mesh size in the y direction,
we get

hjmi (s, y)l, [hjrama(zi,y)| < cohe ™"

Then we obtain

(Lbu), = —ch

hi+ b
i %32211(3% y;) + crh®(hy + hj1)ms(2i,y)  (2.166)

where m3(2;,y) is bounded on [y;_1,¥;j4+1].
Using the expansion (2.123), we can write
L= L + L po +eLin. (2.167)

Now we consider each term in detail.
Using the Taylor expansion of ug at (z;,y;), we have

hy + hy
(Ltuo),; = JTJH ((bi — bi—1)uoij
bi bi_1expo;_1
_ h Ly | (@1
(o~ 2 Y] @109

+ h2(hy + hja)ma(@, ys)-
Since b(z) is smooth, by the mean value theorem we can write (2.168) in
the form
hj + hjta
2
+ hQ(hj + hj+1)’/T5(.’E, yj)

(Ltug),; = h (O1b(zs, yj)uo0ij + biO1uo(zi, y5))

(2.169)
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where 75 is bounded on [z;_1, z;11].
Further, using the explicit form of the boundary layer function pg(x,y)
in (2.164), we obtain

(L?Po)ij = ( ( biexp o + bi-1 ) uo(1,y;)siexp (—(1 — z;)b; [e)

expo; —1  expo;j_1—1

b;

a muo(lvyj)siﬂ exp (—(1 — zi41)bit1/€) (2.170)

B bi_1expo;_1 hj + hja

uo(l,yj)si_l exp (—(1 —xi_l)bi_1/€)> 2

eXpo;—1 — 1

Using the mean value theorem, the smoothness of b(z), and (2.33), we have
the estimate

lexp (—(1 = @it1)bit1/e) —exp (—(1 — z441)bi/e) |
1—z,;_ "
< b = bia | exp (—(1 = wi-1)bi f€) < eshexp (—(1 - wi41) By /2)

where b; € [By, Bz]. Rearranging the terms in (2.170) and taking into con-
sideration the smoothness of s(x), we get

(Lipo),; = ((ﬂ exp (=(1 = ;)b /e)

expo; — 1

_expcri —1

b; exp (—(1 — xi+1)bi/5)>

expo;_1 — 1

+ (b—l exp (—(1 — 2)bi_1 /€) (2.171)

_ bi_1expo;_1
expo;_1 — 1

exp (—(1 - ffz‘)bi/f))

hj + hjp w

5 0o(1,y5) = h(hj + hjt1)me(2, yj)

+ hWﬁ(CL’,ZJj))

where

Im6(@,y;)| < coexp (—(1 = @iy1)B1/2¢), @ € [wi—1,@it1].

By the mean value theorem, from (2.164) the equality

1
e (Lin),; =

55(hj + 1) (b = bio1)mij + h(hy + hjp)me(z,y;)  (2.172)
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follows where due to (2.140) we have
|7 (2, y;)| < cio (e +exp (—(1 — zip1)B1/2¢)), € [xi—1,Tiq1]. (2.173)

Taking into consideration (2.139) and the smoothness of b(z), the equality
(2.172) can be rewritten as

e (Ln);; = h(hj + hjsa)ms(x, ;) (2.174)

with the estimate of g similar to (2.173).
Thus, combining (2.166), (2.169), (2.171), and (2.174), we obtain

’ (L (u" — u))m

= ’(Lhuh)ij + <6822u($¢,yj) — biO1uo (x4, ;)
(2.175)

h; + h;
h% +h(hj + hjr1)mo(z,y)

- UOij31b(9Ci)>
where

[m10(2,y)| < c10 (h+ &+ exp (=(1 — zi41) B1/2¢)) ,

T E[Ti1,Tiq1), YE [mjflvyj+1]~
At the nodes of the grid the following equality holds:

hohy ot hia
(Lu)ij_hT

fij — (Lu)ij

Now we consider the expansion of the differential operator L similar to
(2.163)
Lv=Liv+ Layv

where
Liv = —e01v + 01(b(z)v), Lov = —edaav.
Use the expansion (2.123) and write
Liu = Lyug + Lipg +€L1n.

Because of (2.33), for Lqpp the following estimate holds:

Lipo = g(y) exp (~(1 = 2)b(x)/2) (1 = 2)dnd

h; + h;
+ e M1 — 2)b(x)1b — 01b + e (1 — x)? (O1b)° )h%
< epplit it exp (—(1 —z)b(x)/2e) for z € [ms, ziq1]-
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Taking into account (2.139) and (2.140), we get

ELln S 612h J

AR (o exp (<1 - )b(a)/22)) for @ € [o i)

Thus, with (2.136) for d11ug, we obtain

hj + hj+1

(Lu)ij =h 9

(03Oruo (i, y;) + woiO1b(w;) + ma(z,y))  (2.176)
where 717 is estimated similarly to (2.173).

By substituting (2.176) into (2.175) we complete the proof. O

In order to prove the convergence of the numerical solution to the exact
one, we define the barrier function for the right-hand side of (2.162).

Lemma 28. There exist grid functions o™ and y" on §2;, with the properties

" <e1 on 2, (2.177)
" < eh om 02, (2.178)
such that
Lho" > hhjyy  in (2, (2.179)
" >0 on Iy (2.180)

LM > hhjyiexp (—Bi(1 —x41)/26)  in 2, (2.181)
Y>>0 on I (2.182)

This lemma is proved in much the same way as Lemma 21.
Finally, the following convergence result is valid.

Theorem 29. Assume that (2.4), (2.3) hold. Then there exist constants hg
and c independent of h and ¢ such that ¥V h < hy and for ¢ < h the solution
u” of the problem (2.159) satisfies the estimate

max |u — u”| < ch (2.183)

2
where u is the solution of the problem (2.18), (2.19).

The proof follows from Lemmata 27 and 28 as in the previous case.

Thus, we constructed the grid problem for the convection-diffusion prob-
lem with regular and parabolic boundary layers. Its solution converges to the
exact one with the first order in the uniform discrete norm. The numerical
experiments described in Chapter 3 confirm this.
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3 Numerical solution of the discrete problem

3.1 Numerical experiments in the one-dimensional case

As a test example we considered the problem

—eu” + (1 +22)u) = f, z€(0,1),
u(0) =u(l) =0

where

_ _exp(=2/e)
flz) =62 +2x —2+2d, d= T exp(_2/3)

The parameter € was taken in the range from 1/10 to 1/5120. The exact
solution of this problem is given by

w(@) =22 +d — (d+ 1) exp <w>

e

We compared the numerical results obtained by the stable upwind scheme

Ui—1

g U; —
*ﬁ(ui-s-l —2u; +ui—1) + biT + bju; = fi,
(3.1)
t=1,...,n—1, wuy=1u, =0,
by the difference scheme with exponential fitting (see [23])
€0y b; /
T (i1 — 2u; +ui—1) + o (wit1 — ui—1) + bu; = fi,
(3.2)
Ug = Uy =0
. . . . bih bih
with the variable fitting coefficient o; = 9% cth o ; by the proposed two

schemes (1.53)—(1.54) and (1.80)—(1.81); and by the first-order scheme from
[121]. The number n of the nodes of the grid varied from 10 to 320 and the
mesh size was difined as h = 1/n. The error of the numerical solution was
calculated exactly:

5(n) = lu—u"||lcon = max lui; — u?j|
w
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Table 1: The error of the simple upwind scheme (3.1).

3

1/10 1/20 1740 1/80 | 1/160 | 1/320
1/10] 1.5110-1 | 1.5310-1 | 8.9810-2 | 5.3310-2 | 2.8610-2 | 1.4810-2
1/20| 8.9610-2 | 1.7410-1 | 1.6510-1 | 9.6410-2 | 5.6610-2 | 3.0210-2
1/40| 4.7610-2 | 1.1310-1 | 1.8710-1 | 1.7110-1 | 9.9810-2 | 5.8310-2
1/80| 5.2310-2 | 4.7910-2 | 1.2610-1 | 1.9310-1 | 1.7410-1 | 1.0250-1
1/160| 5.3710-2 | 2.8710-2 | 6.2010-2 | 1.3310-1 | 1.9710-1 | 1.7510-1
1/320] 5.4110-2 | 2.4410-2 | 2.4410-2 | 6.9310-2 | 1.3710-1 | 1.9910-1
1/640] 5.4010-2 | 3.0150-2 | 1.5510-2 | 3.2110-2 | 7.3010-2 | 1.3910-1
1/1280| 5.7210-2 | 3.0210-2 | 1.5810-2 | 1.2310-2 | 3.6010-2 | 7.5010-2
1/2560| 5.8010-2 | 3.0210-2 | 1.5910-2 | 8.0510-3 | 1.6410-2 | 3.8010-2
1/5120] 5.9310-2 | 3.0310-2 | 1.5910-2 | 8.1110-3 | 6.2110-3 | 1.8410-2

Table 2: The error of the fitted first-order finite element scheme from [128].

g

1/10 1/20 1/40 1/80 1/160 1/320
1/10{ 1.7110-2 | 3.0110-3 |3.8310-3 | 2.5410-3 | 1.4310-3 | 7.5510-4
1/20| 3.4910-2 | 8.0410-3 | 1.9010-3 | 2.2410-3 | 1.4610-3 | 8.1610-4
1/40| 4.9510-2 | 1.7310-2 | 3.8810-3| 1.0510-3 | 1.2110-3 | 7.8210-4
1/80| 5.7010-2 | 2.4910-2 |8.6210-3| 1.9010-3 | 5.5110-4 | 6.2710-4

1/160| 6.0710-2 | 2.8910-2 | 1.2510-2 | 4.3010-3 | 9.4310-4 | 2.8210-4
1/320| 6.2610-2 | 3.0910-2 | 1.4510-2| 6.2510-3 | 2.1410-3 | 4.6910-4
1/640| 6.3610-2 | 3.1910-2 | 1.5510-2| 7.2810-3 | 3.1210-3 | 1.0710-3

1/1280| 6.4010-2 | 3.2410-2 | 1.6010-2 | 7.7910-3 | 3.6410-3 | 1.5610-3

1/2560| 6.4310-2 | 3.2610-2 | 1.6310-2 | 8.0510-3 | 3.9010-3 | 1.8210-3

1/5120| 6.4410-2 | 3.2710-2 | 1.6410-2 | 8.1810-3 | 4.0310-3 | 1.9510-3

The numerical results are given in Tables 1-5 and in Figures 5-7. In the
figures the error of the simple upwind scheme is marked by the number 2,
the error of the first-order scheme from [121] with the fitted quadrature rule
is marked by 3, the error of the difference scheme with exponential fitting
is marked by 4, and the error of the presented finite element scheme with
the nonlinear quadrature rule is marked by 5. For comparison we show the
straight lines with slopes tgy = 1 and tgy = 2 which are marked by 1 and 6
respectively. The numerical results for the presented scheme with the linear
qudrature rule does not differ visually from the polygonal line 5 and are not
shown in the figures.
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Table 3: The error of the difference scheme (3.2) with exponential fitting.

3

1/10 1/20 1740 1/80 | 1/160 | 1/320
1/10] 1.5810-2 | 6.2310-3 | 2.7910-3 | 6.3710-4 | 1.0810-4 | 1.7710-5
1/20] 3.0710-2 | 9.2910-3 | 2.9310-3 | 1.3710-3 | 3.1510-4 | 5.3110-5
1/40| 4.5110-2 | 1.6510-2 | 5.0210-3 | 1.4110-3 | 6.8010-4 | 1.5610-4
1/80| 5.2510-2 | 2.3810-2 | 8.6910-3 | 2.6310-3 | 7.0110-4 | 3.3810-4
1/160| 5.6310-2 | 2.7710-2 | 1.2210-2 | 4.4710-3 | 1.3510-3 | 3.5810-4
1/320] 5.8110-2 | 2.9710-2 | 1.4210-2 | 6.1910-3 | 2.2710-3 | 6.8210-4
1/640] 5.9110-2 | 3.0710-2 | 1.5210-2 | 7.2010-3 | 3.1210-3 | 1.1410-3
1/1280| 5.9510-2 | 3.1210-2 | 1.5710-2 | 7.7110-3 | 3.6210-3 | 1.5610-3
1/2560| 5.9810-2 | 3.1410-2 | 1.6010-2 | 7.9710-3 | 3.8810-3 | 1.8210-3
1/5120] 5.9910-2 | 3.1510-2 | 1.6110-2 | 8.1010-3 | 4.0110-3 | 1.9510-3

Table 4: The error of the fitted finite element scheme (1.53)—(1.54) with the linear
quadrature rule.

€

1/10 1/20 1/40 1/80 | 1/160 | 1/320
1/10] 2.5310-3 | 1.1910-3 | 3.7410-4 | 1.0210-4 | 2.6610-5 | 6.7910-6
1/20] 1.2910-3 | 8.3010-4 | 3.8010-4 | 1.1810-4 | 3.1810-5 | 8.2510-6
1/40| 1.5110-3 | 6.5510-4 | 2.9410-4 | 1.3210-4 | 4.9510-5 | 1.2010-5
1/80] 2.2910-3 | 3.9810-4 | 3.2910-4 | 1.1510-4 | 5.0910-5 | 2.7510-5
1/160| 2.7710-3 | 6.0010-4 | 1.0210-4 | 1.6510-4 | 4.9510-5 | 2.7410-5
1/320| 3.0010-3 | 7.0110-4 | 1.5310-4 | 3.2110-5 | 8.2510-6 | 2.2710-5
1/640| 3.1110-3 | 7.6310-4 | 1.7910-4 | 3.8710-5 | 2.2410-5 | 4.1210-5
1/1280| 3.1610-3 | 7.9210-4 | 1.9210-4 | 4.5210-5 | 9.7210-6 | 1.2810-5
1/2560| 3.1910-3 | 8.0610-4 | 2.0010-4 | 4.8410-5 | 1.1310-5 | 2.4410-5
1/5120| 3.2010-3 | 8.1210-4 | 2.0310-4 | 5.0010-5 | 1.2210-5 | 2.8410-6

The study of the behaviour of the error of the simple upwind scheme
(3.1) shows that for € > h (Fig. 5) this scheme has the first-order accuracy,
but with e decreasing the order of accuracy decreases. In [102] it was shown
that the scheme (3.2) with exponential fitting has the second-order accuracy
for € > h (Fig. 5) and only the first-order accuracy for small value of €. This
is seen in Figs. 5—7, where the slope of the polygonal line 4 is changed
at around e = h. Calculations for the scheme from [121] confirm the first-
order convergence for small values of the diffusion parameter. The presented
schemes have the second-order convergence not only for ¢ < h/2 that the
theoretically proved but for € > 2h as well. The results (see Tables 4, 5 and
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Table 5: The error of the fitted finite element scheme (1.80)—(1.81) with the
nonlinear quadrature rule.

€

1/10 1/20 1/40 1/80 1/160 1/320
1/10| 2.2710-3 | 1.5010-3 | 4.1110-4 | 1.1210-4 | 2.8610-5 | 7.2210-6
1/20{ 9.2410-4 | 1.1210-3 | 7.1310-4 | 1.9410-4 | 5.2010-5 | 1.3210-5
1/40| 1.8410-3 | 2.3910-4 | 5.5410-4 | 3.4710-4 | 9.4310-5 | 2.4910-5
1/80| 2.4610-3 | 4.6710-4 | 6.0210-5 | 2.7510-4 | 1.7110-4 | 4.6410-5

1/160| 2.8210-3 | 6.2910-4 | 1.1710-4 | 2.7510-5 | 1.3710-4 | 8.4710-5
1/320 3.0110-3 | 7.2010-4 | 1.5910-4 | 2.9410-5 | 1.7310-5 | 6.8310-D
1/640| 3.1110-3 | 7.6910-4 | 1.8110-4 | 3.9910-5 | 7.3810-6 | 9.5310-6

1/1280| 3.1610-3 | 7.9410-4 | 1.9410-4 | 4.5710-5 | 9.9910-6 | 1.8510-6

1/2560| 3.1910-3 | 8.0610-4 | 2.0010-4 | 4.8410-5 | 1.1410-5 | 2.5010-6

1/5120| 3.2010-3 | 8.1310-4 | 2.0310-4 | 5.0310-5 | 1.2210-5 | 2.8610-6

1.0

10 20 40 80 160 320

Fig. 5: The maximum error §(n) in the one-dimensional case for £ = 1/10.

Figs. 57, polygonal line 5) show that for all values of € these scheme are
more accurate than those consider here.

3.2 Test example in the two-dimensional case

Let 2 be the square (0,1) x (0,1) with the boundary I'. As a test example
we congsider the problem

—eAu+00iu=1 in £, (3.3)

u=0 on I. (3.4)

The solution of this problem has a parabolic boundary layer along the
boundary I, and a regular boundary layer near I',y;.
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Fig. 6: The maximum error §(n) in the one-dimensional case, for ¢ = 1/160.

1.0

10-6 . 6
10 20 40 80 160 320

Fig. 7: The maximum error é(n) in the one-dimensional case for ¢ = 1/5120.

The calculations were done on grids uniform in the z-direction. To refine
the grid in the y-direction in the parabolic boundary layer, two approaches
were considered. The first approach has been proposed by N.S.Bakhvalov
in [5]. This approach uses the estimates of the normal derivative of the
solution. We consider two kinds of these grids. The second approach has been
considered by G.L.Shishkin ([111], [57]). He use the grid with a piecewise
constant mesh size that is refined in the parabolic boundary layer.

To solve the discrete problem we applied the pointwise and block Gauss-
Seidel methods. We also use the cascadic multigrid algorithm where the
interpolation on a coarser grid is taken as the initial guess on a finer one.
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3.3 The grids

First we construct the grid in the y-direction according to the works by
N.S.Bakhvalov [5] and V.D.Liseikin [35], [36].

Define the nodes of the grid on the segment [0,1] by a non-singular
transformation A(q) : [0,1] — [0, 1] in the following way:

y; = A(jh), j=0,1,..,N, h=1/N. (3.5)

The generating function A(q) is taken so that the difference of the values
of the solution at the neighboring nodes in the y-direction is uniformly
founded:

|U<.’I/',yj+1)_u($7yj)‘ §61h7 ]203173]\[_1
This condition is satisfied if A(g) is a piecewise smooth function and

‘au(wa Ag))

oq ‘<c2, q€(0,1). (3.6)

According to [35], the use of the estimates (2.131) of the derivative dyu(x, y)
instead of the derivative itself leads to the stronger condition

k

’%{;ﬁ(q»‘gc& 0<qg<1, k>1. (3.7)

Since the solution has two parabolic boundary layers in {2 near the
boundaries I}, = {(z,y) : = € [0,1], y = 0} and I}, = {(z,y) : = €
[0,1], y = 1}, we consider the function A(g) which is symmetric about
the point ¢ = 0.5. The explicit form of the local transformation A(g) in the
vicinity of a parabolic boundary layer, for example, near Ftog, can be found
as the solution of the problem

d -
d_Z =coexp (—vy/vVe), ¢(0)=0, o= 1//0 exp (—7t/VE) dt

where g, > ¢ is the thickness of a boundary layer.
Then on [0, g« the generating function has the form

Mg)=veln (1+4(1-+2)q), 0<g<q.. (3.8)

On the segment [g., 0.5] the function A(g) is the tangent yq+ 0 to the curve
(3.8) at the point ¢,. The point g, of sewing and the parameters ~, § are
obtained by the following iterative process:
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1. the point ¢¥ = h[n/4] is taken as an initial guess;

2. with the value ¢* we construct the straight line v*¢+ 6" passing through
the points (¢¥, A\(¢¥)) and (0.5, 0.5);

3. we determine ¢**! from the equation

M)

8(] =7
4. if |[gF* — ¢¥| > S51ep with the a priori chosen error dg., then go to step
(2) else ¢* is chosen as the point of sewing, 7* and 6% are taken as the
parameters of the straight line, and the iterative process is terminated.

Thus, the generating function for the Bakhvalov grid has the form

VEln(1+4(1—-+2)q), 0<q<qs,
Mg) =S vq+06, ¢ <q<0.5,
1-X1—-gq), 05<¢g<1

We can consider the grids presented in Chapter 2 as grids of the Bakhvalov
type, since they are constructed using the information on the behaviour of
the normal derivative of the solution.

In this case unlike (3.5) the generating function can not be defined ex-
actly. The nodes of the grid are determined by the equalities

Yo = 07
coh . n
= Yj— ) =125,
Yj =Yj—1+ 1+e 2exp(—yy;_1/vE) J 5
(3.9)
Yn/2 = 0.5,

.on
y]::l*yn—]7 ]:§+177n
Here h = 1/n. The grid parameter ¢q is determined from the nonlinear
equation
C(]h
L+ e 12 exp (= 1Yn/2-1/VE)

In the numerical experiments we used the Jacobi-type iterative process.
Another way of grid refinement that we used in the numerical experi-
ments has been proposed by G.I.Shishkin (see, for example, [111], [57]).
Let n 4+ 1 be the number of nodes in the y-direction. The thickness of
the numerical parabolic boundary layer is determined by

7 =min{1/4,/zInn}.

Yn/2 = Ynj2—1+
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The mesh-size is piecewise constant. In the vicinity of the parabolic bound-
ary layer y € [0,7] U [1 — 7,1] it is taken by

T

" = o)

and in the remaining part y € [r,1 — 7] it is determined by

_1—27’

"= T

035 _mesh size

.030 - .
—+the Bakhvalov grid

.025

a5 EEEEEEREIER
.020 -
.015 - —#—the Shishkin grid

.010

005 Wﬁmﬁﬁ/r‘ —athe presented grid

.000 ++—+——+—+—++rr—r—rrrr
1 32  number of nodes

Fig. 8: The mesh-size functions.

The mesh size functions for each grid are demonstrated in Fig. 8. The
number of nodes in the vicinity of the parabolic boundary layer and the
thickness of the layer for the Bakhvalov and Shishkin grids given in Table 6
for various values n for ¢ = 1073, On the presented grid (3.9) the thickness
of the boundary layer is not clearly defined.

3.4 Methods for solving the discrete problem

In Chapter 2 the discrete problem (2.161) was obtained. To solve it we apply
the pointwise and block Gauss-Seidel methods. Now we briefly describe these
methods according to [46].

We represent the matrix A” in (2.161) as the sum of the lower triangular
matrix B” with a nonzero diagonal and the upper triangular matrix C" with
the zero diagonal

Al = Bh  Ch (3.10)
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Table 6: The characteristics of the grids.

number of nodes thickness of
n in bound. layer bound. layer
Bakhvalov| Shishkin| Bakhvalov| Shishkin
32 8 8| 5.94310-2 | 1.09610-1
64 16 16| 7.54010-2 | 1.31510-1
128 31 32| 7.54010-2 | 1.55410-1
256 62 64| 8.10710-2 | 1.75010-1
512 123 128| 8.10710-2 | 1.97210-1
1024 245 256| 8.10710-2 | 2.19110-1
2048 489 512| 8.10710-2 | 2.41110-1
where
a{‘l 0 0 0
ayy ahy 0 - 0
Bh = aé‘l ass a§3 . 0 ,
h h h h h
Apnrr Apre A3 Aprpr—1 O
h h h h
0 afyals--- afpy—y  afy
0 0 a§3 a'leq a}2LM
ch=1 ... ... ... ... ...
h
o o0 0 --- 0 anr_1 M
o 0 --- 0 0

M=(n-1)x(n-1).
Using these notations we rewrite the Gauss-Seidel method as

By 4 chy®) = F k=0,1,...; «© =o0. (3.11)

From here on, k is the number of iteration steps.
The iterative process (3.11) can be rewritten in the canonical form

B" (u(kH) - u(k)> + AM® = (3.12)

The operator B" is a triangular matrix, hence it is not self-adjoint.
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Taking into account (2.159), we can write the system (2.161) in the form

—@ijui—1j + bijUij = Cijuip1; — dijuij—1 — €ijti g1 = fij, (3.13)

t,j=1,...,n—1

where
- hj+hj+1 bz‘—l eXpo;—1 Ao — et
* 2 eXpo;—1 — 1 ’ * hj’
hj + hj+1 bl h
- o= 3.14
i 2 exXpo; — 17 €ij é"thrl ’ ( )

bij = @it1j + cio1j +dij + eij.
Then the pointwise Gauss-Seidel method (3.11) can be rewritten in the form

(ht1) _ 1
’L] bz]

(f i+ az’jugﬁ,lj) + Cijugﬂ, i+ dz‘jugﬁ-ﬂ) + eijuz(’,kj)Jrl) , (3.15)

,ji=1,..n—1 k=0,1,...
The numerical experiment demonstrated that this method failes, especially
on the Bakhvalov grids. This method is sensitive to the grid refinement in
a parabolic boundary layer. We can see this in the example given below.
At the same time A" has a certain block structure. We use this prop-
erty and consider the block Gauss-Seidel method. We denote by U; =
T
(wi,1,%i2,...; Ui n—1)" the vector whose components are the values wu;; of
the grid function for fixed i. Then the grid equations (3.13) can be rewrit-
ten as the system of three-level vector equations
-AU; 1 +BU,-CU;y =F;, j=12..,n-1, (3.16)
where A; and C; are diagonal (n — 1) x (n — 1) matrices. Here
diag (A;) = (a1, ai2s s @in—1)"

diag (C;) = (ci1, i, oo Ci,n—l)T ,
Fi = (fi1: fi2s e fin1)"

and B; is a tridiagonal (n — 1) x (n — 1) matrix

bil —€41 0 0 --- 0 0 0
—dio biz —e; 0 - 0 0 0
0 —dijz3 bjzs —ejz--- 0 0 0
B; = 3 0;3 €i3
0 0 0 0 - —dipn-2bin_2—€in-2

0 0 0 0 -+ 0 bin-1—€in-1
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The block Gauss-Seidel method for the system (3.16) has the form

BUMY = F, + 4,uY 4 c,u®)

i=1,2,.,n—1, k=0,1...

(3.17)

To determin ngﬂ), one have to invert the tridiagonal matrix B;. To do
this, the sweep method can be applied.
The pointwise representation of (3.17) has the form
k+1 k+1 k+1 k+1 k
—dz‘jug,jq) + biju 5] )~ %UEJH) = fij + az‘jugq,j) + Ciju§+)1,j7 (3.18)

i=1..,n—-1, j=1..,n—-1, k=0,1...

The numerical experiments showed the advantage of the block Gauss-Seidel
method over the pointwise one.

Moreover, the convergence of the block Gauss-Seidel method is indepen-
dent of the grid refinement in the vicinity of a parabolic boundary layer.
Here we prove this theoretically. Denote the error of the block iterative
method after k iteration steps by

r =l —wy, =12, 01

We fix ¢ and take the maximum of the modulus of rfjk which is achieved at

some jo:
(k) | _ (k)
Tijo| = e i | (3.19)
We subtract (3.13) from (3.18) and obtain
(k1 (k1 k+1) k+1) k)
7d i30T i,jo— ) + b i30T i,J0 ) - ijo 'E][)Jrl - Cli7j07'1(717‘70 tc Ci,joT z(+1 ,jo°

Rearranging some terms to the right-hand side and taking modulus of both
sides, we have

(k+1) (k+1) (k+1) (kD) )

bivj() 2,50 ’ < d 4,50 ’LJU*I’ + €i,jo |T ZjoJrl‘ ta Qi go |Ti— 1,50 + Ci,jo |7 i+1,50 | °
Using (3.19) we rewrite the last inequality in the form
(k+1) (k+1) (k:)
(bi,jo - di,jo - eiJo) Ti50 <a i,50 |T'i—1,50 ~+ Cijo Ti41 50| - (3-20)
Thus, we get
(k+1) (k+1)
—Qijo |T5—1,5, + 8 |1y Jjo ‘ = Cijo |Ti+1,50 <0 (3.21)
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where s; = b; j, — di j, — €ij,- Let us introduce the notation

pi= expo; — 1
where o; = b;h/e. Then XD b; + p;- With this notation, dividing
expo; — 1
hi, + h;
the inequality (3.21) by % we get
—(biz1 + pic1) [P 4 (b + pica 4 i) iD= i i | 0. (3:22)

Then we consider the k-th iteration step of the majorized Gauss-Seidel
process

— (b1 + pi )Y (b + pir 4 p )t — it =0, i = 1,2, ,7%3—2}53
$EFD k1) — '
Lemma 30. Let the inequality
] <0
be valid for alli=1,2,...,n — 1. Then the estimate
rgf“jj“‘gtz(.’““) Vi=1,2...,n—1 (3.24)

holds.

Proof. Because of (3.21) we have

bi— i— ; ‘
P < bicitpic1 50— — N O S I N . |
70 bi + pi—1 + pi oL bi 4 pie1 + pi 70
Taking into account (3.23) we get
bi— i— i ‘
PG o W S O N TS S |

e s
bi+picit+pi bi+pici+pi
Now we use induction on 3.

1. For i = 1 we have

t(k+1) _ P1 t(k)
! bi+po+p1
and
(k+1)‘ o P1 (k) L1 (k) _ ,(k+1)
Ty = —|r5; | < ——t5' =1t .
’ L.go bi+po+p1 |l 2900 = by +po+p1 2 !
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2. Let the statement (3.24) be valid for i < m — 1. Then we obtain

(k-{TI) _ b1+ Pm—1 ’I"(]H_l)» Pm T(k) )
mJo bm + Pm—1+ Pm m=1.5o bm + Pm—1+ Pm m+1.do
bm—1+ pm—
< m—1 Pm—1 tg,]ji_%) + Pm tgrlfll _ t;’:+1).

o b’m + Pm—1 + Pm b'rn + Pm—1 + Pm

The proof of the lemma is completed. O

Thus, the convergence estimate of the block Gauss-Seidel method coin-
cides with that of the pointwise Gauss-Seidel method for an ordinary differ-
ential equation and is independent of the grid refinement in the y-direction.

1.0 [ .............................. -0

0.8

0.6 ( »f"".’f’r» s
04 | T e
N

0 32

Fig. 10: The error of the block Gauss-Seidel method T’E,Ii)>.5‘
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First, we investigate numerically the convergence of the pointwise and
block Gauss-Seidel methods for a model problem free of a boundary layer
on a uniform grid.

We consider the problem

—eAu+0du=0 in {2, u=1 on I.

It has the exact solution u = 1.
In the Figures 9 and 10 the behaviour of the error

sg)ko)ﬁ = |u(x;,0.5) — u®(z;,0.5)

along the middle line y = 0.5 after k iteration steps is demonstrated for the
pointwise and block Gauss-Seidel methods respectively. As the initial guess
we take

© _p

o 0) _ L
i =0, 4j=1.,n-1 and ri; =1 4j=1..,n-1

U
The use of the cascadic algorithm allows to improve further the conver-
gence. With this approach we take the interpolation of the solution on a
coarse grid as the initial guess on the finer grid with the halved mesh size.
Now we consider the construction of the interpolation from a coarse grid
to a finer one.
In the numerical experiments we applied the linear interpolation in the
y-direction

Yj — Yp
h;

Ui’j,1 + Mui,j (325)

UI(:L'“y;:) = h
J

where y; € [y;-1,¥;], hj = y;—y;j—1. Let us show that with this interpolation
the order of accuracy holds when the nodes of the grid are defined by (3.9).
To do this, we rewrite (3.25) in the form

u (i, y7) = auij1 + (L= a)uiy, o= (y; —yi) /hy.

Using the Taylor expansion with the second-order reminder term for w; j_i
and u; ; about (z;,y)), we have

! (i, y5) — w(zs, yi)| < lowi 1 + (1 — @)us ; — ulzi, yi)|

< 5 (alyf — 51 + (L= @)y — u)?) (e )| (3:26)

< 13 [Ou(zs, yi)| < eah?.
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Here we used the estimate (2.131) from Lemma 24 and the definition (3.9)
of the grid.
Note that the estimate (3.26) for the Shishkin grid has the form [57]

’ul(azi,y}:) —u(zi,yp)| < esh? In? (1/h).

In the z-direction the grid is uniform. With decreasing the mesh size from
2h to h, we transform the grid equations (3.13) to determine the values of
uw(xs,yj) fori=2m—-1,m=1,2,..,[n/2],j=1,2,...,n—1:

I I I _
—dijug j 1 + bijui; — Cijug i1 = fij + aiguio1y + Cijtlig -

The values of u;—1,; and u;y1; at each level i = 2k — 1 are known from
the previous grid. Therefore to determine the values of u(x2n,—1,y;) at each
level m one has to solve the system of linear algebraic equations with the
tridiagonal matrix Bog_1, m = 1,2, ..., [n/2]. We show that in this case the
order of convergence also holds.

Consider the error
i=2m-1, m=12,.,[n/2], j=12,.,n—1

—_— .. I
52’]’ = ’Uz] - uij| y

It satisfies the system of equations
—dij0ij—1 + bij0ij — €50 j41 = b5, |05] < csh?
fori=2m—1,m=1,2,....,[n/2], j =1,2,....,n — 1. Then we have

(aij + Cij) max . |5”| < max . ‘Qljl

i,j=1,2,....n i,j=1,2,...,n

Taking into account the definitions of a;; and c;; we get

8i;| < cgh®.
3 Ol < o

The number of iteration step that is required to achieve the convergence
criterion is shown in Table 7 for ¢ = 1/2560 on n x n grids. As the con-
vergence criterion we used the following restriction on the residual after k
iteration steps:

max
i,j=1,2,...n—1

(Lhu(k)>ij _ fij’ < Ah,

We put
AP — 1052 . 91— H/h

where 1/H is the nodes of the coarser grid.
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Table 7: The number of iteration step in the Gauss-Seidel method.

Gauss-Seidel method
n pointwise block cascadic algorithm
Bakhvalov|Shishkin|Bakhvalov|Shishkin|Bakhvalov|Shishkin
32 28 15 2 2 2 2
64 97 31 2 2 2 2
128 355 70 3 3 2 2
256 1307 178 5 5 4 4
512 * 896 19 19 14 15
1024 * * 151 152 124 125
2048 * * 1052 1049 877 891

* — convergence was not achieved after 2500 iteration steps

3.5 Discussion of the numerical results

We write the solution of the problem (3.3)-(3.4) as the series

o0

u= Z%wn(m) sin(mny) = Ssol

n=1
where
Un(x) = Cry exp(ATx) + Cop exp(Ajz) — 1,

B exp(Ay) — 1 B 1 —exp(A})
" exp(Ag) — exp(A})’ exp(A3) — exp(A})’

2n —
14+ /1+ (2emn)? 1—+/14 (2emn)?
Al = , Ay =
2e

2 ’
0, if n is even,

= 4
n — ()5’ if n is odd.
™

[O)

Lemma 31. The series (3.27) converges uniformly for x € [0, 1].

(3.27)

(3.28)
(3.29)

(3.30)

(3.31)

Proof. Consider the sequence of the functions {¢,,(z)},-, and show that

it is uniformly bounded on z € [0, 1].
Let us calculate the derivatives ¢/, (x), ¥/ (z):

Un () = A Cin exp(AT@) + A; Con exp(A3 ),

wll(x) = )‘?20171 exp()\?x) + )‘320271 exp()\gx).

n
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Because of (3.29) and (3.30) the following inequalities hold:

N >0, A <0 Vn=1,2..,
CMSO, CQnSO Vn:1,2,....

Since
Yl(x)>0 Vazel0,1] Vn=12..,

tn () is convex function on [0, 1]. At the point of maximum the equality
P! (xg) = N Cry exp(AT o) + A5 Cop exp(A5zg) = 0
is valid. Then we have

. ( )7 )\_721 exp(Xf) 1 /(AT =A%)
xPATo) = AT exp(AF) — 1 ’

Calculate lim [|¢,(z0)|. Let n be sufficiently large, for example, 2emn >> 1,
n—oo
then AT =~ mn, and A\ ~ —mn. It is easy to calculate that

<o) — 1/27n
exp(zg) = (%) =exp(1/2).
Then we get
Yn(xo) = m exp(mn/2) + % exp(—mn/2) — 1
2

" exp(mn/2) + exp(—mn/2) !

This yields
lim ¢ (z0)] = 1. (3.32)

n— oo

Thus, the sequence {¢, ()} —; is uniformly bounded on [0, 1], in other
words, there exists such a constant M that

[ton(z)] < M Veel0,1]] Vn=12...
The sequence of the functions {sin(7ny)}, >, is uniformly bounded on [0, 1]

by 1.
Therefore, the terms of the series (3.27) satisfy the inequality

[V tn(z) sin(mny)| < My,, Vn=12,.. (3.33)
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where v, are the terms of the convergent series

AM & 1

e = (2k—1)3

S = (3.34)

of numbers. Then according to the Weierstrass criterion of the uniform
convergence of functional series, the series (3.27) uniformly converges.O

The estimate (3.33) shows that the series (3.27) converges at least as
(3.34). We denote by Sk the partial sum of (3.34). The following estimate
holds (see [53]):

4M 1
5= Sk = emd K2

Therefore to achieve the given accuracy 0 it is necessary to take at most K

terms where
| M
K=2 —36.
emw

From (3.32) we have that the constant M is close to 1.

In the numerical experiments the series was calculated within an accu-
racy § = 107°. The exact solution was calculated as the partial sums S0,
5523?0, and ngloo. In Tables 8, 9, and Figures 11, 12 the numerical results are
presented on the sequence of grids for e = 1072, 10~2. We use the notations

Ryl = e fug; = S5 (i)

Here u; is the solution of the discrete problem at the node (z;,y;) of the
(n+1) x (n+ 1) grid, K is the number of the terms of the series. In the
Figures 11, 12 the values of Rzlﬁooo(n) are marked by the numbers 2, 3, and
4 for the Shishkin, the Bakhvalov grids and the grid (3.9) respectively. For
comparison the straight lines with slapes tgy = 1 and tgp = 2 marked by
1 are shown in Figures 12 and 11 respectively. For ¢ = 102 the method
has the second-order convergence. When e decreases to 10~3, the method
becomes first-order convergent.

Finally, we discuss the results obtained in the two-dimensional case with
the special approximation of the right-hand side similar to that considered
in Chapter 1. We considered the Dirichlet problem

—cAu+ 0 ((1+2z)u)=f in {2,
u=0 on I

where

—2/¢)
62?20 —2e+2d, d— —P :
f=6x"4+2x — 2+ 2d, 1= exp(—2/2)
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Table 8: The error R™:X for e = 1075,

abs

Bakhvalov grids

Shishkin grids

n n,1000
Rabs

n,2000
Rabs

n,3000
Rabs

n,1000
Rabs

n,2000
Rabs

n,3000
Rabs

64| 1.54510-3

1024| 2.81910-5

32| 7.16010-3 | 7.16010-3

128 6.82410-4 | 6.81210-4
256| 2.47110-4 | 2.46010-4
512} 7.38910-5 | 7.20010-5

1.54610-3

1.90910-5

7.16010-3
1.54610-3
6.81210-4
2.45910-4
7.18810-5
1.88910-5

7.22419-3
2.99310-3
1.16510-3
4.01310-4
1.20910-4
3.63410-5

7.22310-3
2.99219-3
1.16410-3
4.00810-4
1.20319-4
3.37910-5

7.22310-3
2.99210-3
1.16410-3
4.00910-4
1.20210-4
3.37410-5

Table 9: The error Ra";f for e = 1072

Bakhvalov grids Shishkin grids
" | g [ g | g | g | g | oo
32| 1.75510-3 | 1.75510-3 | 1.75510-3 | 3.62910-3 | 3.62910-3 | 3.62910-3
64| 4.89610-4 | 4.89610-4 | 4.89610-4 | 9.57910-4 | 9.57910-4 | 9.57910-4
128| 1.25410-4 | 1.25410-4 | 1.25410-4 | 2.43510-4 | 2.43510-4 | 2.43510-4
256| 3.15810-5 | 3.15910-5 | 3.15910-5 | 6.11310-5 | 6.11110-5 | 6.11110-5
512| 7.91610-6 | 7.91910-6 | 7.92010-6 | 1.53110-5 | 1.53010-5 | 1.53010-5
1024| 2.61410-6 | 2.12010-6 | 2.12010-6 | 3.98710-6 | 3.97710-6 | 3.97710-6
Table 10: The error R’;X on the grid (3.9).
e=10"" e=10"°
| g | gz | g | o | oo | gy
32| 1.5410-3 | 1.5410-3 | 1.5410-3 | 3.2210-3 | 3.2210-3 | 3.2210-3
64| 4.4610-4 | 4.4610-4 | 4.4610-4 | 1.5710-3 | 1.5710-3 | 1.5710-3
128| 1.1610-4 | 1.1610-4 | 1.1610-4 | 6.8510-4 | 6.8510-4 | 6.8510-4
256 2.9510-5 | 2.9510-5 | 2.9510-5 | 2.4810-4 | 2.4610-4 | 2.4610-4
512| 7.4310-6 | 7.3910-6 | 7.3910-6 | 7.3710-5 | 7.2010-5 | 7.1910-5
1024| 2.5510-6 | 1.8510-6 | 1.8510-6 | 2.8310-5 | 1.9010-5 | 1.8910-5
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1072
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1
2
3,4
107° ' ‘
32 64 128 256 512 1024
Fig. 11: The error R’;>°°°(n) for ¢ = 1072,
107"
1072 3\;\’\
) 1
10°? &
O
1074 &
2
® 3,4
107° ‘
32 64 128 256 512 1024

Fig. 12: The error R™;30%°

abs

(n) for e = 1073.

The solution of this problem has the parabolic boundary layer near the
boundary I, and the regular one near I,;.

n
abs

Table 11: The error

for standard and special approximations of the right-

hand side.
approximation n
of the right-hand side| 32 64 128 256 512 1024
standard 3.9910—2 1.9910—2 9.6810—3 4.5210—3 1.9310—3 6.2710—4
Special 4.3210-3 2.6510—3 1.3610-3 6.2610—4 2.3310—4 1.4010-4

Table 11 contains the results obtained on the Bakhvalov grid with the
fitted quadrature rule with the special and standard approximations of the
right-hand side for € = 1/2560. The results demonstrate that the application
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of the special quadrature rule for the approximation of the right-hand side
improves the accuracy.
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