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Triangulation of two-dimensional multiply connected
domain with concentration and rarefection of grid

Pyataev S.F.

Introduction

Wide use of the finite element method for solution of various kinds of
problems raises the requirements to the level of automation of domain frag-
mentation. There are algorithms and programs allowing to construct uni-
form grids on simply connected domains [1-4]. The advantages of the al-
gorithms are their universality with respect to the shape of boundary of
the domain as well as the possibility to triangulate simply and multiply
connected domains with concentration and rarefaction of grid; the latter
is attained by division of the initial domain into a number of simply con-
nected domains and fragmentation or consolidation of one-dimensional final
elements on boundaries of some subdomains. An obvious disadvantage of
the triangulation algorithms for simple connected domains when applying to
multiply connected domains or concentration of the grid is a great amount
of handwork: division of the domain into subdomains, fragmentation of each
boundary, input of information, etc. The idea of triangulation algorithm for
multiply connected domain with concentration of grid described in [5]. Tt
avoids the necessity of division of the domain into a collection of subdo-
mains and at the same time retains the disadvantage connected with hand
fragmentation of each contour (with the exception of the simplest elements
of the contours: linear regions and arcs). Except that, indistinctness of the
introduced in the paper requirements with respect to the properties of a new
node being constructed (proximity to previously constructed node, proxim-
ity to one-dimensional finite element, simultaneous proximity to the node



4 Pyataev S.F.

and the element, etc.) makes the programming considerably more difficult
and forces the user either do develop conditions for a new node being con-
structed or quite reject the algorithm.

For the purpose of constructing a completely automated process of tri-
angulation of arbitrary two-dimensional multiply connected domains, an
algorithm of fragmentation for arbitrary piecewise smooth closed boundary
contours is developed in the present paper.

In the third section, on the basis of the scheme proposed in [4, 5] and
representing a consecutive filling of domain with triangular elements, the
process of triangulation of the domain is constructed. The process of fill-
ing starts from the boundary which is preliminarily fragmented into one-
dimensional finite elements. In the course of construction of triangular el-
ements the boundary of the domain being not yet triangulated (following
[4], we will call it current grid boundary, CGB) represents a number of con-
tinuous closed piecewise curves with possible self-intersections. A detailed
description of construction of new nodes and elements is given in this sec-
tion; in particular, the criteria of selection of previously constructed node
(or construction of a new one) are given. And as a consequence, the criteria
of construction of an element are given in the case when some regions of
CGB close in. In the course of fragmentation of the boundary of domain
and its triangulation a function of steps is used which adjusts the sizes of
one-dimensional and triangular finite elements according to their position
in the domain. Any positive function can appear as the function of steps;
the principles of its construction are given in section 2.

Presentation of both the algorithms is given in a form convenient for
programming. In appendices some auxiliary procedures are given, which
are necessary for the work of the program and which, apparently, should be
designed as subroutines.

1 Some recommendations on choice of the function of
steps

In many problems one can beforehand make certain assumptions on sub-
domains of large gradients of the sought functions, appearing, as a rule,
in the locations of concentrators of different kind, on lines of jump of co-
efficients of the problem, due to singularities in some points of boundary
conditions, in the points of sharp change in the character of the boundary,
etc. For concentration of the grid in such subdomains a necessity appears
to construct finite elements with a step less than the basic step hg used for
larger part of the domain (2. Since during triangulation the triangular ele-
ments are constructed successively, their size can be determined according
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to their locations, by means of certain positive function of steps h(z,y) with
parameters responsible for the ”centers” and ”sizes” of the subdomains of
concentration. These parameters should be chosen so that on leaving the
subdomain the sizes of triangle elements would be of the order hy.

Apparently, exact recommendations on construction of the function of
steps cannot be given owing to the absence of exact definition of the notion
of the domain of concentration. Therefore let restrict ourselves to formu-
lation of general principles of construction of these functions, extending
descriptive ideas of one-dimensional case to two-dimensional one. Let in
one-dimensional case a qualitative graph of the function of steps is repre-
sented on Fig. 1

T —51 1 T +51 T2 —52 T2 X2 +62

Fig. 1: An example of graph of the function of steps.

It is convenient to represent the function of steps in the form of a sum

n
h(z) = ho + Z(hz — ho) fi(@, %, 6:) ,
i=1
where §; is ”characteristic size” of the i—th domain of concentration; x;
is center of domain of concentration; f; is equal to 1 in the point z; is of
zero order outside its domain of concentration. In this case an approximate
graph of the function f; can be represented like on Fig. 2

fi(z)

i —0 x Ti+0;

Fig. 2: An approximate graph of the function f;(z).

So, one can take f;(x) as one of the variants:
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or

uz

s if z € (1’175“1‘14*51),

Here the degree n; is positive and characterizes the value of gradient of the
function f;.

However, an expansion of these variants over two-dimensional case by
direct introduction of the second coordinate would not embrace the cases
when the domain of concentration is stretched not along one of the axes
but along some direction determined by a vector (cos a, sin «v). To eliminate
this shortcoming, equip every such domain with a local coordinate system,
in which the direction of stretching of the domain coincides with one of the
new axes. Evidently, this transformation of coordinate system should take
into account transfer and rotation, i.e.,

T; = (z — x;) cosa; + (y — yi) sin oy,

Ui = —(x — x;) sina; + (y — yi) cos

where (z;, y;) are coordinates of the center of i-th concentration; «; is angle
of rotation of the axes of i-th concentration.

Then the functions of steps in two-dimensional case by analogy with
one-dimensional case can be taken in the form

h(l‘,y) = hO + Z(hl - ho)fi<x7yaxiayi7aiaﬁia 6l)a
i=1

where (3;,6; are ”characteristic sizes” of the domain of concentration, and
f; can be presented, for instance, as

~ ~ -1 ~ o\ Mg ~ o\ may —1
(o (@) e (@) 0 0 G) <))
o))}

) if (Iay) € ‘Q’ia
where 2; = (x; — i, i + 5;) X (y; — i, y; + 6;), the degrees n;, m; as before
are positive and characterize the gradients of the functions f; along the
direction (cos «; ,sin ;) and orthogonal to it.
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2 Fragmentation of the boundary of multiply
connected domain

Let the boundary of a multiply connected domain be formed by N piecewise
smooth closed contours given in some Cartesian coordinate system Ozy in
parametric form.

Consider a piecewise smooth contour I" (its index is omitted) formed by
L smooth curves v,, n=1,...,L, whose parametric equations are

(z(t), y(t)) = 2(t) = (t), t, <t<t] (2.1)

where ¢, ¢ are the limits of variation of the parameter ¢ for +,,. From the
conditions of continuity and closeness of the contour I" it follows that

@, (t)) =xni1(t,,y), n=1,...,L—1,

zi(ty) = L (t]).
Parametrization (2.1) must be such that for the inner contour I” the direc-
tion of encircling under increase of the parameter ¢ would be clockwise, and
for the external contour would be counterclockwise.

Fragmentation of I' is performed successively, starting from the first
smooth curve v : @ = x1(t). The first node on I' is y; = x1(¢; ). Assume
that [ — 1 first curves of the contour I' are fragmented already, the last
constructed node on these curves is y,, , = ¢;_1(t;" ;) = z;(;) and a part
of the curve ~; is fragmented, with the last node y,, ,4+r = wl(ti) where
t! is the value of the parameter ¢ for the last node, t} € [t;, tf) Then we
construct next node of the curve «; by 3 steps.

Step 1.

Denote by s;(t,,t) the length of a part of the curve 7, corresponding to
the values t}, ¢ :

t
sutht) = [ 1a(0) [d e lttf)
t

k

where &(t) is derivative of x(t) with respect to t.

A new node y,,, ,+r+1 is constructed as follows: the value of the function
of steps h(x,y) is calculated in the last constructed node y,, ,+x and the
solution #, | of equation

Sl(tgwt) = h(ymfﬁ-k)v te [tgf’tl—i_L (22)

is looked for. Suppose that solution of this equation exists (the contrary is
considered in step 2). In this case it is unique due to positiveness of | &;(¢) |
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(may be, with exception of finite number of points which do not influence
uniqueness). According to the obtained value ¢} we calculate x;(#}, ;) and

look for the solution ¢}, | of the equation

1 -
si(th, t) = S(Ynisen) + (@1 (T11))]- (2.3)
Suppose that this equation has a solution as well (the contrary is considered
in step 3). Consider the inequality

d— Sl(téwtgwrl)

l
si(tt, t§€+1) <& d=lyn tx — ) | (2.4)

the left-hand side of which is the relative difference between the length of arc
and the length d of segment corresponding to the arc. The inequality charac-
terises deviation of the arc from segment of stright line. Value of the param-
eter ¢ is specified by the user (for instance, e = 0.01). If the inequality (2.4)
is satisfied, then we declare the point wl(tgﬁl) as a new node yp, ,+4k+1 and
turn to construction of the next node. The declaration of the constructed
point as a new node is substantiated by the fact that due to validity of
equation (2.4) the one-dimensional finite element [y, ,+k,Yn, ,+k+1] aDP-
proximates the corresponding arc of curve good enough, and its length d
under h(zx,y) smooth enough correlates with the average value of the func-
tion of steps over the ends of this element (see right-hand side of equation
(2.3)). Otherwise, if the inequality (2.4) is not true, we successively decrease
the right part of equation (2.3) by certain value (for example, by one tenth
of the right-hand side) till the inequality (2.4) would be true. This situa-
tion appears when the length d of one-dimensional element calculated in
accordance with the function of steps is ”large” enough for acceptable ap-
proximation by this element of the arc which corresponds to it. Therefore
successive decrease of this length is performed down to the value required
by inequality (2.4). After that, we turn to construction of the following node
Yny_1+k+2-

Completion of the procedure of construction of new nodes on [-th curve
of the contour I" (and, respectively, on the whole contour I') is connected
with the absence of solution of equation (2.2) and is described in step 2.

Step 2.

Now, consider the case when the equation (2.2) does not have solution,
ie.,

s1(th 1) < B(Yn,_,18)-

This means that the last constructed node y,,, , 4 is "close” to ml(t;'), and
construction of a new node by means of the function h(z,y) is impossible.
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Denote by 9; the length of the remainder ;, and by dj denote the length of
the last constructed element:

o= Sl(ti)’t?_)’ dg :| Yni_14+k—1 — Yni_1+k ‘ .

o gi(t}h) © @it xi(t])
v /\ i /\ v
/y"l—l‘i’k\\ \ N
Ynj_1+k
Yny_1+k—1 Yn;_1+k—1 Yny_1+k—1
a: 0 < e1dy b: erdr < 6; < 0.5dy [H] 0.5d, < 6 < dj

Fig. 3: All possible situations when §; < dj.

In Fig. 3 the situations are shown when §; < dj and displacement of the
last constructed node takes place into the last point x; (tf) of the curve ;. In
Fig. 3a, or a redistribution of §; occurs over all the previous one-dimensional
elements approximating ; proportionally to the lengths (Fig. 3b). In Fig.
3c a new one-dimensional element with the length dj is constructed, and
new residual §; — dj is introduced and redistributed as above, over all the
elements proportionally to their lengths.

Thus, if the residual §; satisfies the inequality

0 < e1dy, (2.5)
where 7 is small enough, for instance, 0.1, then we displace the last con-
structed node y,, ,+, into the last point of ~; :

Yni_1+k = wl(tlJr)

and turn to construction of nodes on the next curve v;41. If (2.5) is not
valid, we consider the inequality

01 < 0.5dy. (2.6)

If (2.6) is true, then the number of nodes on 7; remains the same, and the
residual §; is redistributed over all arcs constructed on ~; proportionally to
their lengths. Denoting by §; the length of that part of the curve ~; which
was passed when constructing the nodes:

k—1

P E l 1 — U 4l Il — 4=

S| = Si,i+17 Si,i+1 = Sl<tiati+1)) t() = tl . (27)
=0
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Then the lengths of new arcs sjll 41 are determined through the lengths of

previous arcs sﬁz 11 according to the formulas
sthiy=sbi(L+68/5), i=0,....k—1 (2.8)
Successively solving the equations
sttt =sthy, =6, i=0,... k-1, (2.9)
we obtain new values ! and as well as new nodes on 7; :
yh = m(th), i=0,.. k-1, (2.10)
y:;l,l-‘,-k = ml(tl-i_)-

After that we turn to construction of nodes on the next curve ;1.
If the residual ¢; does not satisfy the condition (2.6), then consider a
new inequality
6 < dg. (2.11)

If this inequality is true, i.e., the length of the remainder part of ~; is less
than the length of the last constructed one-dimensional finite element but
exceeds its half-length due to violation of (2.6), then the number of nodes
on - is increased by one, new residial is introduced

5l:Sl_§l

where s; is lenfth of +;, and

k—1

- l 44l

S = Sii+1 T Sk—1,k>
i=0

Then we come to (2.8)-(2.10) with new ¢;, §; and with addition of one more
arc, the length s} , , of which is equal to the length of the last constructed

arc 52_1) .- At that, it is necessary to increase the value of k by one in
(2.8)-(2.10).
In the case when (2.11) is not satisfied, we consider the equation
Sl(tgcvt) =d, tE€ [tf’cat?_]v (212)
which has a solution due to inequalities

si(th,t") = 6 > dy,

Sl(tk,ti) =0 < dg.
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The value t} | obtained from (2.12) is tested for realization of the inequality
(2.4) and further in accordance with the algorithm, with the difference that
if (2.4) is not satisfied then not the right-hand side of (2.3) is successively
decreased, but the right-hand side of (2.12).

Step 3.

Consider the case when the equation (2.3) have no solution. Then after
obtaining ¢}, from equation (2.2) we come to the inequality (2.4), in which
tfe 41 1s substituted by t~f€ 41+ If the inequality is true, we declare the point
wl(ffﬁ_l) as a new node Y, ,+k+1 and turn to construction of new node on
~i- Otherwise successively decrease the right-hand side of the equation (2.2)
till (2.4) is satisfied, after that turn to construction of the next node.

The described algorithm allows to decompose the boundary of domain
into one-dimensional finite elements (further called units), each of them
being specified by a pair of integers n; and ny — numbers of its nodes — and
their coordinates. The information on successive order of the units can be
stored in two one-dimensional arrays K and M.

1) k; = K(i) is the number of units on the i-th contour of CGB, i =
1,...,N.

2) mj = M(j), mji1 = M(j+ 1) are the numbers of the first and
second nodes of j-th unit, respectively, if j # > . k; forall n =1,...,N.
Otherwise, i.e., there exists such n, that j = Y %, k;, then the number of
the first node of such a unit is M (j) as before, and the number of the second
node is M (37 ki 4 1).

It is necessary to stress that the length of the array K changes in the
process of triangulation, what is connected with change of the number of
connectedness of the domain being not triangulated yet. The length of M
also is not fixed, since either M is supplemented with new units, or the
exhausted units from M are removed (the units which are not included in
CGB on the next stage of construction of element).

3 Triangulation of a domain

It was noted above that the triangulation algorithm is based on successive
filling of the domain with triangular elements. When filling the domain
with the elements, CGB changes and in general case represents a number
of closed broken contours. The number of connectivity of the domain being
triangulated and the number of units of CGB change and can exceed the
initial quantities. Therefore in the program one should watch that the length
of the arrays K and M (see section 3) would not exceeded the given one.
Under coming together of different parts of CGB or in the domains
of sharp changes of the function h(z,y) the the triangular elements being
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constructed can be of an elongated form, and that can result in considerable
errors when using this grid in finite element method. In order to avoid this
defect, after construction of the grid an improvement is made which little
changes compact triangles and significantly changes the elongated ones. The
improvement of the grid is performed by means of the relations

where xj, is the node being corrected; ny is the number of nodes surrounding

the node xx; xy, are the surrounding nodes. The number n; and nodes xy,

are determined by means of the triangles possessing the common vertex xy.
The triangulation algorithm consists in the following.

Step 1.

Find an unit z,,;, of CGB which has the minimal length [,,;, and the
1 2 - +

nodes x;,,,., ®5,;,. Denote by z_ . . 2. the units preceeding and following
Zmin, Tespectively. Choose from z . .zt~ an unit 2, which forms with

Zmin the minimal angle Bnin (Bmin = min(0G, f2); the angles 81 and o
are measured counterclockwise from z,;, to z,.., and from 2. t0 Zyin,
respectively). Denote the nodes of the choosen pair of nodes (they are either
Ziins Zmin OF Zmin, Zyni) Dy @7 2 2 If B, < 80° (otherwise we
come to step 4), then go to step 2.

Step 2.

Make a test of getting into the triangle A(zmin, 2.5,:,) (see Appendix 1)
of the nodes of CGB, with exception of the nodes forming z,in, 25, If
there are no such nodes, come to step 3, otherwise from all the nodes got
into A(Zmin, 25:,) choose a node y, closest to z,,;, (see Appendix 2) and
go to step 12.

*
min

Step 3.

Consider a circle with radius |25 — x7""|/2 and the center x. which is
the midpoint of the third side z in A(zpmin, 25,);  Te = (27 + 257) /2.
If nodes of CGB do not get into the half of the circle external with respect
t0 A(Zmin, Zih;n ), then come to step 13. Otherwise from all the nodes choose
the closest to z node z,, and divide the quadrangle O(2in, 250 Tm) SO
that the minimal angle of the resulting triangles would be maximal (the
choice should be done from two variants of division of the quadrangle into
two triangles). The consideration of the quadrangle is necessary in order to

min

avoid constructing elongated triangle with the vertices ", 27" x,,, since



Triangulation of two-dimensional multiply connected domain 13

x,, can be located close enough to z. Further, declare both the obtained
triangles as elements, remove zpin, 2y,,;,, from CGB, determine connectivity
of the domain, add two new units [£7"", x,,], [Tm, 5"] (see Appendix 8)
and go to step 1.

Step 4.
Construct the point
Lo 2

Here n is the normal to z,,;, directed inside the domain:

2 1

(wmin - wmzn) Xn = lmine?ﬂ €3 = (07()’ 1)7

hep is average value of the function of steps over the vertices of equilateral
triangle constructed on the basis z,,, :

3
3 . V3
hcp =5 h(51)7 é] = wyguru ] = 17 2; 53 = w;l'yn, + 9 lminn-
=1

W =

Under certain conditions described below, the point x, will be a new
node, and the triangle A(zp,in, ) will be a new element.

On the basis of the unit z,,;, construct a rectangle (2, one of which sides
iS Zmin and the another is directed normally and its length equals 2H. Here
H is the altitude in A(zpin, €+) dropped on zny, :

2H = \/4|w* - mzn l?nzn

By means of the control domain (2, let ascertain the criterions of proximity
of the new node x, to the previously constructed nodes and units. If in
certain sense x, is close to nodes or units, then we refuse to construct the
new node and choose the best node from the close ones for construction of
the new element.

Let define two sets My and M7 as follows.

My is the set of numbers of nodes of CGB, which got into 2, with
exception of the numbers of nodes x,},, and =2,

{n x, € 12, :cn;ém 1:1,2}.

min>

M, is the set of numbers of the units of CGB, which crosses 942, with
exception of the number of the minimal unit z,,;, :

Miy={n: 2, N0 £ 0,2z, # Zmin -
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Introduce two additional points z; and z5 :

zi=x! . +(=1)AlT, i=12,
where .
T= 1. (mrgun - m'r%zin)’
min
1 c
Determine the angle £ at the vertex z¢ in the triangle A(z,,z1,22),
where z¢ = 21, if 23,;, = 2, and z¢ = 2o, if 2%, = 2% (see step 1).

If one of the sets M, or M; is not empty, then come to step 5.
Determine the angle oy at the vertex x, in the triangle A(zy, z2, x,).
If oy > 30° and Bin — £ > 20°, then declare the point x, a new node and
come to step 2.
If a; < 30°, then redetermine the point x, so that the new node has
1= 300 .
Ly = mfnzn + |‘?"2 mzn| tg 757

At that, if §,,;, — 75° < 20°, then come to step 2, else to step 14.

The introduction of the points z; and z, is obliged to the fact that
the unit z,,;, at one of the previous steps of construction of the element
can be produced by different ways: through connection of two neighbouring
units (step 13), through connection of two previously constructed nodes
(step 12), through construction of a node (step 14). Therefore the length
of zpin in the domains of larger gradients of the function of steps h(x,y)
can be 2-4 times less than the value h(x?,,,). Since after construction of
the grid an improvement is made which allows to extend z,,;, somewhat
in such domains, it is better to estimate the quality of the element being
constructed through the points z1 and 29 which are midpoints between
T i T — h(x,,,)T and @2, . + Sh(xS,;, )T, respectively. Thus,
in the course of construction of a new node in such domains we analyse
not the elements constructed according to the new node but their possible
transformations after inprovement of the grid. The estimation of value of
the angle (3,,;n, — £ is performed in order to avoid acute angles between the
units mer [x}nznﬂ ] (lf Zmzn = Zmzn) or [.’13*, m%nzn]’ Z:un (lf Zmzn = Z;l_nn )

In Fig. 4 a situation is shown when declaration of the trlangle A(Zmin, Tx)
as a new element results further in appearing the triangle A(z} . @.) with
acute angle. Therefore in such situations we will refuse to construct new
node and (under favourable conditions) take as an element A(zpin, 25:,);
i.e., come to step 2.
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T«

/A

Fig. 4: In this situation there is no new node.

The analysis of the angles o and S, — & was introduced into the
initial variant of the algorithm after consideration of a large number of
experimental calculations made in the domains of large gradients of h(x).
One of examples is shown in Fig. 5: a grid is shown before (Fig. 5a) and

Fig. 5: The grid before a) and after b) improvement.

after (Fig. 5b) its improvement. From this, one can see that if the analysis of
the elements being constructed is performed over the lengths of their sides
(see Fig. 5a) but not over average values, then a sharp enough transition
is possible from the elements of small sizes to elements of large sizes, what
entails poor quality of elements in the domains in such vicinity.

Step 5.
If M, # 0 (else go to step 9), then choose from M, a number m for
which the corresponding node x,, is closest to z,,. To do this, determine
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the distances I; (see Appendix 2) from the points x;,i € M,, t0 zpni, and
choose
I = 1%111\2, l; = m. (3.2)
In the triangle A(x,,, 21, 22) consider the angle « at the vertex x,, (z;
are determined in step 4). If a > 30° (else come to step 8), then test an
intersection of the segment [x,,, z} ;] with the units of CGB with numbers
from M; without the nimbers of units neighbouring the nodes ,,,x}, .,
(see Appendix 3). For convenience, denote x,, by y.. Introduce an integer
parameter I N D of switching and set IND = 0.

Step 6.
If there are no intersections, then go to step 12 if IND = 0 or to step
14if IND = 1.

Step 7.

There are intersections. With use of the nodes of the intersecting unit z,,
construct oriented triangles A(zy,in; @),k are nodes of the unit z,, k €
{k1,k2} (see Appendix 4). When constructing these triangles, one should

Fig. 6: Testing rectangle (2.

make sure of their existence (in Fig. 6 oriented triangle A(zyin, k,) does
not exist; x,, is the node closest to zin)-

From these triangles (if both exist) choose A(zmin,®k,), ki € {k1,k2},
whose minimal angle is larger (further, we will denote the minimal angle
of any triangle A(z,x) by a(z,x)). Having denoted the choosen node xy,
by y., test an intersection of both lateral sides of A(z,in, y«) with all the
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units of CGB except the minimal one and those adjoining it and node y..
Then come to step 6.

Step 8.

The closest node x,, is far enough from z,,;, (since a < 30°), therefore
displace the constructed point . to z;,;, so that the distance between its
new location (denote this point by y.) and z.,;, would be equal to I,,/2:

1
2

(&
y* = mmin + lmn7

and l,,, is defined in (2).

Ymo

1
{Emz

| >

s

|
| Y
1
|
|

L) 7

w

; i
Lmin  AFmin Lmin

Fig. 7: Test of an intersection rectangle {2 with units.

In the triangle A(z1, 22, y.) determine the angle £ at the vertex z¢ de-
fined in step 4. If 5,5, —€ < 20°, then come to step 2, else test an intersection
of one of lateral sides of A(zyn,y«) with the units with numbers from M,
and come to step 6, setting IND = 1.

Step 9.

If Biin — € < 20°, then come to step 2, otherwise choose from all the
units intersecting 0f2 the units z,,, and z,,, which are ”closest” to zpin.
For this, consider all the points of intersection y} of the units z,, k; € My,
with the lateral side I of rectangle §2, which comes through z! , , and
analogous points y? for I's. Then the numbers m; and my are determined
as
mj, jZl,...,Np.

k; €M,
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If Iy and I intersect different ”closest units 7, then N,, = 2 (Fig. 7). If one
of the lateral sides I'; is not intersected by the units (Fig. 6), or if I} and I
are intersected by the same unit (Fig. 7), then N, = 1, and consider only
the number my (if necessary, m; is specified as maq, Fig. 8a).

o,
r—— — - Zma
I Yoo
| | T
| 2 |
n |
1 1
minzn Zmin mgnzn
a) b)

Fig. 8: All possible situations when lateral sides of {2 intersect with units.

Consider oriented A(zp,, ), ©=1,...,Np; x, is defined in (3.1).
If such oriented triangles do not exist (that is possible only in the case,
when the ”closest” intersecting unit is unique and comes through I} and
I'; between z;, and ., see Fig. 8b), then denote the unit z,,, by z, and
come to step 7. Under existence of A(z,,, €.) consider the angles «; at the
vertex x, in these triangles, ¢ = 1,..., Np. If a; < 90, then go to step 14,
otherwise choose o;;, = max «;.

1<i<N,

Step 10.

Construct oriented triangles A(zmin, mgnil ), where a:{nil are nodes of the
unit 2z, . Possible values of the parameter j can be of the following list:
J € {1,2}, if both the triangles exist. If only one triangle exists, then j =1
if the node w}nil is used, and j = 2 for the second node of the unit z,, .

Choose from A(zin, T, ) the triangle which has larger minimal angle:

a(Zmin, T, ) 2 & (Zmin, Ty, )

for all 5 from the list of values of this index: Then come to step 11.
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Step 11.
If

a(zmina a:ﬁ,lhl ) < a(zmiru m*)7

then come to step 14, otherwise test an intersection of lateral sides of
A(me?mzrlul) with all the units of CGB, except the nodes adjoining the
node ;cjlil and the unit z,,;,. Besides, test a getting the nodes of CGB into
this triangle, except the node «J} and nodes x,,,, 2.

If there are no intersections and nodes inside the triangle, then redenote
the node scjl ., by y. and go to step 12.

If there are intersections or if the triangle contains at least one node of
CGB, then choose a new value js from the list of values of parameter j (if it
is not exhausted) and come to step 11, preliminary redenoting js by 7. If the
list of parameter j is exhausted, then consider the second intersecting unit
Zm,, (under the condition that the list of parameter m; is not exhausted,
i=1,...,Np), and if a;, > 90°, come to step 10, preliminarily redenoting i,
by 1. Otherwise (either a;, < 90°, or the list of parameter m; is exhausted)
come to step 14.

Step 12.

Declare the triangle A(zpin, Y«) as an element, remove z,;, from CGB,
determine the number of connectivity of the domain, add two new units
[zl . Y], [Ys, £2,;,], and come to step 1.

The number of connectivity is increased by one, if y, and x? . belong to
one contour of CGB, and decreased by one, if these nodes belong to different

contours (see Appendix 7).

Step 13.
Declare the triangle A(zpmin, 2;,,;,,) s an element, remove Zp,in, 2y, from
CBN, add one unit [z, 27| (see Appendix 5), and come to step 1.

Step 14.

Declare the triangle A(zmm,w*) as a new element, remove z,,;, from
CBN, add two new units [z}, . @.], [x., ©2,,,] (see Appendix 6), and come
to step 1.

TTLZTL’

4 Conclusion

We illustrate of performance of the algorithms for different domains in fig-
ures below.
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% <\
LY

Fig. 9: A grid for a ring.

In Fig. 9 a grid is given for hA(x) = 0.18 for a ring with internal and
external radii 0.5 and 1, respectively (all the values here and below are
divided by dimensional unity). The equations of the contours of a ring were
given in parametric form:

x(t) = (cost, sint), «x(t) =0.5(cost, —sint), 0<t<2w. (4.1)

The value of the parameter £ (see inequality (2.4)) was set as 0.001. The
grid has 178 elements and 115 nodes.

A ring with two circular cuts is shown in Fig. 10a . Two contours have
parametrization (4.1), the other two are defined as follows:

(z —0.6)2 +y> = (0.05)2, @ =(0.6+0.05cost, —0.05sint);
(4.2)
(r—0.4)% + (y+0.7)*=(0.1)>, x=(04+0.1cost, —0.7 — 0.1sint),

27 <t <L0.

The function of steps has two points of concentration in the centers of the
circumferences (4.3):

h(z,y) = ho + (h1 — ho)/A(z, y) + (h2 — ho)/B(z,y),
(7525 s ()]
ey (]

A(z,y) =1+

B(z,y) =1+
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a) zoom, normal size. b) zoom, large size.
Fig. 10: A grid for a ring with two circular cuts.

ho = 0.168, hy =0.02, hy = 0.04.

The grid has 864 elements and 483 nodes. The vicinity of the circumference
with radius 0.05 is shown in Fig. 10b in larger scale.
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a) 489 nodes. b) 954 nodes.

Fig. 11: Grids for a circular disk with an ellipsoidal cut.

Figures 11a and 11b demonstrate fragmentations of the same domain
under diverse parameters of the function of steps. The external boundary
of the domain is a circumference with radius 2, and its parametric equation
is

xz(t) = 2(cost, sint), 0<t<2m.
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The internal boundary is an ellipse with center in the point x. = (0.3; —0.5)
and its major semiaxis is inclined at the angle o = 30° to the axis Oz. The
principal axes are a = 0.9 and b = 0.2. Parametric equation of the ellipse
with the account of clockwise encircling of the boundary has the form

x(t) = x. + acostcosa + bsintsin

y(t) =y + acostsina —bsintcosa, 0<t <27,

The center of the domain of concentration is the center of the ellipse. The
function of steps for both the triangulations was taken in the form

o=t o {1 (2) 4 (21

T=(x—z)cosa+ (y—ye)sina, §=—(x—2a.)sina+ (y—y.)cosa,

with hg = 0.3, h; = 0.03. In Fig. 11a we take m = 2, and in Fig. 11b we
set m = 4. The grid in Fig. 11a has 880 elements and 489 nodes, and that
in Fig. 11b has 1768 and 954, respectively.
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a)a pinion: normal size. b) one cog: large size.
Fig. 12: Grids for a pinion with 20 cogs.

In Fig. 12a the domain is a pinion with N = 20 cogs. A grid has 1219
elements and 702 nodes. The parameters of k—th cog are given in Fig. 13a,
where

a=360°/N, ar=(k—-15a, a)=ap+05a,1<k<N.
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Then the points of bases and tops of the cogs are calculated as

xp =r(cosag;sinay), =z, = R(cosaj;sinay), k=1,.,N; Tyi1 =21 .
Parametrization of the external boundary is fulfilled for each side of a cog:
=z, +tlx, —x), T=x,+t(rp1—x,), 0<t<1, 1<k<N.

Parametrization of the internal boundary is demonstrated in Fig. 13b:

Lk+1 m,’;

~ 7
////
-

-
ap Q) Qg+l

a) the external boundary. b) the internal boundary.

Fig. 13: The boundary parametrization for a pinion.

x(t) =ri(cost ;—sint), r; =025 B<t<2r—f,
o(t) =21 +t(zi—2zi1), 0<t<1, i=2314

Here

z1 =ri(cosB; sin8), z9 =r1(1.5; sinf),

z3 =7r1(L.5; —sinf), =z4=ri(cosf; —sinf).

The centers of the concentration domains for the cogs are located in
the vertices x,"; the axes of the domains lies on the rays 8 = oj and
in orthogonal directions. The value of step is the same and equals h; =
0.25|x;, — x|. The center of the concentration domain for internal cut is
located in the point (r1;0); the value of step is hy = 0.05; the concentration
domain is stretched along the axis Ox.

So, the final form of the function of steps is

-1

B HCRCIE

i=1

ol ()
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where

a=15R~-r1), b=0.7rR/N, ¢=1.3, d=0.7,
I = (v — x)") coso + (y — y") sin

g = —(z — ") sinag + (y — yy") cos ay.

In order to demonstrate details of the grid on a cog, one of the cogs was
cut out, and the enlarged grid is shown in Fig. 12b.

1.0

0.8 t
0.6 T
0.4 -

0.2 -

0.0 | : j i ; \/

00 02 04 06 08 1.0 12 14 1.6 1.8 2.0

Fig. 14: A grid for the rectangle with wedge-shaped and triangle cuts.

In Fig. 14 a grid for a rectangle with wedge-shaped and triangle cuts is
shown. The grid has 1348 elements and 726 nodes.

I3 T2 7 L6
1'31;
10
o e} Ts
Ty Ts5

Fig. 15: The rectangle with wedge-shaped and triangle cuts.

In Fig. 15 the vertices x;, ¢ = 1,...,10, are shown which determine a
domain where

r1 = (05, 07), Lo = (1; 1), r3 = (0, 1), Ty = (O, O),

o5 =(2;0), @= (2 1), x7 = (15 1), @s = (0.3; 0.3),
xy = (0.1; 0.4), w10 = (0.2; 0.5).
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All the lines are straight except of the line from x; into x;. T heir
parametrization is

() =z + (@ — ), 0<t< 1,

x, is the beginning point of segment, .., is the end point of segment. The
line from x7 into «; is the parabola y = az?+bx-+c, where a, b, c are selected
according to the conditions that the parabola comes through the points x7
and x; and the value of derivative under z = z; is 0.4. Parametrization of
this line with account of counterclockwise encircling of the external contour
is

x(t) = (—t; at> = bt +¢), —x7 <t < —aq.

The grid obtained has two concentration domains; the center of the first
domain is the point x. = %(:cg + @9 + x19), the center of the second one is
the point x;. Sizes of steps were chosen as

h1 =0.1 min(|:138 — ililol, |$9 — 11310‘, |IE8 — II)9|) >~ 0.022,
h2 =0.04 |w1 — £L'7‘ ~ 0.023.

Each concentration domain was symmetric with respect to its center and
the axes of a local coordinate system obtained by parallel transfer of the
initial system into the center of concenteration

r1 = 1.6 max(|zs — x10|, L9 — x10]|, |Ts — T9|) = 0.22,
To = 0.2 |:131 — .’137‘ ~0.12.

Major step of the grid is hg = 0.15. Then, with account of the form of the
concentration domains and their centers, the function of steps was taken as

h(z,y) = ho + (h1 — ho) {1+ (x ;1xc>4+ (y;—f’cf}_l )
s () < (7))

In figures 16a, 16b enlarged vicinities of the vertex x; of wedge-shaped
cut and of the vertex a9 of triangle cut are shown.

From explanations it is clear that for the construction of a grid it is
necessary to input only the sufficient information: equations of contours
and function of steps.

There are two disadvantages of the proposed algorithms. First, it is im-
possible to determine beforehand the length of the arrays storing the infor-
mation about the grid. Second, numeration of nodes is not optimal. Since
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a) the wedge-shaped cut. b) the triangle cut.
Fig. 16: Zoom of cut areas , large size.

the length of arrays is not known beforehand, then in programs it is neces-
sary to check the border of the array. If the ordered length of some array is
less than it is necessary, then the programs halts and a message is displayed.
Since the programs of fragmentation are used within the frames of more ex-
tensive computations, then for determination of lengths of the arrays it is
recommended at first to run these programs for the given domain without
the complementary programs.

More essential disadvantage is the non-optimality of numeration of nodes,
what results in sparse stiffness matrix when using the finite element method.
Storage of the whole stiffness matrix considerably increases the required re-
sources of memory, therefore in the present case it is necessary either to use
specific methods of storage and solution of large sparsed systems [6-18], or
to avoid constructing global matrix and use some iterative methods. The
reason for use of iterative methods is that they presuppose only calculation
of products of matrix by vector, what can be done if we known the local
siffness matrices. The array which stores the numbers of elements adjoining
xy, can be filled immediately in the process of triangulation of the domain.

Thus, the existence of practically effective algorithms for sparse matrices
and a possibility to solve a system of equations without formation of global
matrix by some iterative method allow to eliminate the second shortcoming.

As a conclusion let note that these algorithms extremely convenient for
use due to the possibility of elimination of the direct and indirect short-
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comings of the algorithms of fragmentation together with the simplicity of
handling, high degree of complexity of triangulated domains and a good
quality of grid.

5 Appendix 1

Let the points (21, y1), (22, y2), (3, y3) be vertices of a triangle which are
written down in the order of counterclockwise encircling. The point (2., yx)
lies outside the triangle if at least one of the following inequalities is valid:

v; >0, i=1,23,

where
v = (e —21) (Y2 — Y1) — (T2 — 1) (Y — Y1),

vy = (T4 — 22) (Y3 — y2) — (T3 — 22) (Y« — Y2),
v3 = (T« — 23)(y1 — y3) — (T1 — 23)(Y» — ¥3)-

6 Appendix 2

Let in the triangle A(x,x1,x2) the angles at the vertices ¢; and x5 are
acute. Only such situations arise in the algorithm of triangulation. The
distance [ from the point x to the segment [x1, x2] under the condition is

= o= tws — )|, t= T2 @

)

|zo — x1]?

where (, ) is the Euclidian scalar product; | - | is length of vector.

7 Appendix 3

Let two segments be determined by the points &1 = (21, #3), 2 = (27, 23)

and y; = (y1,v3), y2 = (y2, y3). The test of intersection of two these

segments can be performed as follows: points of the first segment are
Tr=a +t1(i€2—.’1}1), t1 € [071],

and points of the second segment are

y=y1 +ta(y2 —y1), t2€l0,1].
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These segments do not intersect, if the system of two equations with respect
to t; and to
z1+ti (T2 — x1) = y1 +t2(y2 — Y1)

does not have solution (the segments are parallel) or one of the solutions
does not belong to the interval [0, 1].
More effective algorithm of testing is as follows: if at least one of the
inequalities
v; >0 1=1,2,

is satisfied, then the segments do not intersect. Here

v1 = [(y1 — 1) (23 — 25) — (aF — 21)(y3 — 23)]
x[(yF — x1)(a] — 21) — (2f — 21)(y3 — 7)),
vy = [(z1 — 1) (W5 — w3) — (i — y1) (s — )]

<[z —y) (W5 —v3) — (U7 — yi) (a3 — ys)].

8 Appendix 4

Oriented triangle A(zyin, ) is understood as a triangle with ordered list

of vertices &l . = (x1, x}), 22, = (22, 22), z), = (2}, 25), its direction
of encircling is determined counterclockwise and this encircling does not
contradict to the list of vertices. Existence criterion of oriented triangle is

the inequality
(a7 — 1) (25 — x3) — (2} — 1) (23 — 23) > 0.

9 Appendix 5
L1

A min
m'inzn T3

w'gnn

Fig. 17: Connection of two adjacent units creates the new triangular element.

When constructing triangular element by connection of two adjacent
units on I-th contour of CGB, the value K (I) of the array K is decreased
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by one, and the transformation of the array M is performed as shown in
the figure 17. Le. from the list of units of /-th contour the units
[ min mm} [ min min]

Ty » Lo L) y L3

are removed, and a new unit [x7"", £7""] is included. In other words, the

contour @y, ", T P x,. ..., xq is transformed into the contour
zy, ", 5", x2, ..., T

10 Appendix 6

When constructing triangle element (on the basis of unit z,,;, belonging
to I-th contour of CGB) by construction of a new node ., the value K (I)
of the array K is increased by one, and transformation of the array M is
performed as shown in the figure 18.

Fig. 18: A new node x. creates the new triangular element.

Le., from the list of units of I-th contour the unit [z} 2

mins Lonin) 18 Temoved,
and the units [z} ;.. .|, [T+, ©2,,,] are included. In other words, the contour
xy, TL ... T2 ®a, ..., 1 is transformed into the contour xy, =zl .
2
Ly, T ..., 1.

min?

11 Appendix 7

When constructing a triangular element (on the basis of the unit z,,, be-
longing to [y -th contour of CGB) through the previously constructed node
Yy, belonging to l;—th contour, the number of connectivity of the domain
is increased by one if I; =I5, and two new contours of CGB are introduced
due to fragmentation of the previous one; if I; # [, then the connectivity is
decreased by one, to K (I1) the value K(I1)+ K(l3) + 1 is assigned to K (I;)
and K (l3) is set to be zero.

Transformation of the array M is performed as shown in the figures 19
and 20.
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Under condition {; = s

Fig. 19: The connectivity is increased.

the contour @1, T}, 2., T2, -+, Y1, Ys, Y2, ..., x1 has divided into
1 2 2
two contours i, T, Yss Y2, ..., T1 a0d T, T2, .oy Y1, Yu, Thpin-
If iy # o
— — =T T T —
/ Yis \\ //\?\\
/ A0 N N
/ Ve \ T2 \ A
/ \ li k
/ \ \ \ \
| \Y2 \ ‘ ‘
Y /

Fig. 20: The connectivity is decreased.

1 2
the contours yi, Y., Y2, ..., Y1 and X1, T,y Lipin, L2, ---, L1 have
combined into one contour
2 1
Y1, Ysy Tipiny L2y -+ -y L1y, Topims Ysxy Y2, - Y1.

The possible variants of closure of [ —th and l;—th contours are shown
with dotted lines, with exception of the case when the lines intersect.
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12 Appendix 8

When constructing two triangle elements by division of a quadrangle into
two triangles so that the minimal angle of the triangles would be maximal,
two situations, as in App. 7, are possible.

1. The units z,,;, and z;,;,, belong to I;-th contour of CGB, and the node
x,, which completes these units to a quadrangle belongs to lo-th contour
(I1 # l3). In this case the number of connectivity is decreased by one,

because a junction of two contours into one takes place. The contours

Y2 Y1

Fig. 21: The number of connectivity is decreased by 1.

Y1, Tm, Y2, --., Y1 and xy, =", 5", F"", 9, ..., x; have formed
the contour
min min
Ty, .’131 s Tmy Y2, - oy Y1, T, $E3 , L2, «.., T1.

2. The units z,;, and 2z}, and the node x,, belong to the same contour

of CGB. In this case the number of connectivity can increase by one or
remain the same.

Increase of connectivity by one takes place if the node x,,, does not form
an unit of CGB with one of the nodes 7" or £7*'". Transformation of the
array M is performed according to the figure 21 given above, but in this

case the contour

min min min
Ty, 2131 7132 ,2’133 y L2y vy Y1, Ty Y2, -y X1
is divided into two contours xi, """, Tm, Y2, ..., €1 and T, 7",

T2, -y Y1, Tm-
The number of connectivity remains the same if the node x,, forms an

min min

unit with one of the nodes "™ or x§"" (in the figure 22 it is x5*""). The
contour

min min min
L1, Ty y Lo y L35 Tmy Y1, -5 L1
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turns into a new contour x, """, T, Y1, ..., T1-

Y1
&,

Tm

mgnzn
w'{nln

e

1 mgnzn

Fig. 22: The number of connectivity either increase by 1 or remain the same.

consideration (when y, forms an unit with x

Note that in the previous Appendix similar case was not taken into

1 2 —
min OF @o . under [; = l3),

since it is eliminated by the algorithm.
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