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A batch of applied programs for numerical solution
of convection-diffusion boundary-value problem

Kireev 1.V., Pyataev S.F., Shaidurov V.V.

Introduction

The work consists in development of an economical algorithm based on the
classic variant of finite element method and intended for numerical solution
of convection-diffusion boundary-value problem

—eAu + b1% + bQ f in Q, (1)
u=g on I. (2)

Here two-dimensional domain {2 is limited by piecewise smooth boundary
I'; € is a small positive number; by, ba, f, g are smooth enough functions.

A good adaptation to the conditions of this problem is required from
the algorithm, which would ensure high-accurate solution of boundary-value
problem under linear approximation of the function u(x,y) on each finite
element. This means that an automatic division of the initial domain into
finite elements oriented along the characteristics should be anticipated in
the algorithm, and the requirement of economy indispensably leads to the
use of the technology of embedded grids.

The idea of this algorithm is as follows: for construction of a new grid it
is sufficient to analyze the behavior of piecewise linear and Hermitian cubic
interpolations of the approximate solution obtained within the framework
of standard finite element approach, and on the basis of this analysis to
construct a partition of edges of finite elements, which automatically leads to
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construction of a new embedded grid accounting for more subtle peculiarities
of the desired solution.

For realization of this idea, it is necessary to have an algorithm of de-
termination of partial derivatives of the function u(z,y) from its given node
values. From a number of algorithms of determination of partial deriva-
tives we have chosen a method described below, which, in our opinion, most
organically matches this class of boundary-value problems. Unfortunately,
theoretical substantiation of this statement is very problematic, but the
approach being proposed has made a good showing in a great number of
numerical experiments.

The testing of algorithms and programs has been performed for a simpler
boundary- value problem; it was assumed that the domain 2 = [0, 1] x [0, 1]
is unit square, by = 1, by = 0, and f = c is constant, i.e., the following
equation was considered

Ou .
—eAu+ 9, ¢ o (0,1) x (0,1).

It is easy to verify that this equation admits solutions of the form
u(z,y) = (016)‘1(‘1"71) + Cge)‘”) sinnmy + ay + b+ cx,

where a, b, ¢y, co are certain constants, and
1 1
A= 2_5(1 +V1+(2ne)2) >0, M= 2_&:(1 — /14 (2ne)?) <0,

at that A; =2 e~ ! + n2e and Ay = —n’c under € < 1.
If we are interested in solutions which do not depend on y, then, as it is
easy to show, the solution of the equation is of the form

z—1
u(z) = ¢ exp —— +co +cx.

Just in this class of functions the debugging and testing of the algorithm of
edge division have been carried out.

1 An algorithm of determination of partial
derivatives

Let approximate the partial derivatives of a function u(z,y) determined by
numerical values u; in nodes My(xs,y5) : w(zs,ys) = uy in the vicinity of
the point My as a linear combination

du(z,y)
ox

=y + (¥ = z0)ug, + (¥ = Yo)uzy,
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Ou(z,y
ML) _ 4= sy + - iy
0 40 40 40 40

where wy, Uy, Uy, Uy, Uy, are certain unknown constants to be determined

for each node of the grid.

e ﬁl \\\ M

P My M Mo

— M M;
Fig. 1: Fig. 2:
The nondegenerate case of dy, . The degenerate case of dy,.

Then the central difference u; — ug approximates the derivative of the
function

uy(t) = u(zo +t(x —20),90 + t(y — y0)), t € [0,1]

in the point N (t = 0.5) with error O(h%), where

hy = (x5 —20)%+ (Y7 — %0)2,

uy(0) = ug, and wy(1) = uy. Therefore for smooth enough function u(z,y)
the following relations should be valid:

dy(ul,u®,ul  ul ul )/h% =0(1)

x? Yy TxT? Ty yy

where

dJ(u27u27u2x7ugy7ugy) = (us — uo)
— (zy —x0)[ul +0.5(x; — 20)ul, +0.5(y; — yo)ugy]

— (ys — yo) [l + 0.5(xy — wo)ul, + 0.5(ys — yo)ul, .
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Grouping together neighbouring to My nodes My, Ms,..., My, ..., Mg,
(see Fig. 1) construct the functional

dJWo(uO u27u2xa Uy W Z{d]u u urzvugyv yy)} /h6

It is easy to verify that the components u?, ug of solution of the least square
problem

inf
Uy

u u

0 0 0 )
Ty’ Yy

0,0
dag, (ug, s Uy U —
ud,uf,ul,ul,,

give an approximation to partial derivatives

ou(zo,yo) Ou(xo,yo)
ox ’ oy

of a smooth enough function u(z,y) to within max{h?%}. At that, total
number of nodes M necessary for calculation of partial derivatives in the
point My must be not less than 5 (K > 5).

However, arbitrary sequences of points close to My cannot be used for
such procedure. So, for instance, a sequence of points similar to that shown
in Fig. 2 gives a functional d);, degenerate with respect to u ug, ud,, ugy,
ugy, whose minimization problem has infinite number of solutlons There-
fore, if in the process of calculation it appears that quadratic functional
dar, generates a linear system of algebraic equations with singular matrix,
then additional nodes M ; immediately neighbouring the node M, are con-
sequently taken into consideration, till the functional dj;, will become non-
degenerate. The highest accuracy of the derivatives calculated in such a way
is reached in internal points of the domain.

2 Construction of a sequence of embedded grids

The described above algorithm of determination of partial derivatives in
vertices of finite elements from calculated node values of numerical solution
u(z,y) has been used for construction of a sequence of embedded grids.

A new grid was constructed on the basis of analysis of behaviour on each
edge of the initial grid of both linear and Hermitian cubic interpolations of
function w(z,y) constructed from node values of function v and values of
partial derivatives u,, u, calculated in the nodes of the grid.

An edge was not divided, if on the edge the module of maximal difference
of values between linear and cubic splines did not exceed €,. Otherwise, a
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new point was chosen inside the edge, proceeding from the following rea-
sonings.

Denote by M/, the desired point of division of the edge MyM ;. Then, as
it is shown in Fig. 3, on the edge MyM ; a piecewise linear approximation of
the function u(z,y) appears; minimizing in some norm the residual between
the latter and cubic approximations, we obtain an algorithm of construction
of the point M/ of the edge MoM;.

MO Mf] MJ

Fig. 3:
A piecewise linear approximation u(z,y) on the edge MoM;.

Let give more details. Denote by wu(t) the cubic spline for the edge
[Mo, My]; t € [0,1] and the values

d d
u(0) = o, w(l) =y, F(0) = up, (1) =
are given. Then

u(t) = ago + ap1t + apat? + agst®,
u(t) = aio + a11(1 - t) + CL12(1 — t)2 + a13(1 — t>3,

where

. .
app = Up; Aol = Up;

age = 3(uy — ug) — 2uf — uy;

/ /.
aps = —2(u1 — ug) + ugy + ug;
!
alp = U1; @11 = —Ug;
A !
a1z = —3(u1 — uo) + ug + 2us;

arz = 2(uy —ug) — ugy — uj.

Let vg(t) and vy (t) be linear approximations of the function «(¢) on the
intervals [My, M) and [M;, M ;], where t € [0,7] and t € [r, 1], respectively;
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0 < 7 < 1. Then the functional
T 1
b, = /(u(t) —wo(t))*dt + /(u(t) — vy (1)) dt
0 T
gives the square of norm of residual between u(t) and its piecewise linear

approximation vg(t), v1(t) in the space L3[0,1]. Direct computations give
the following expression for the functional:

&1, = (Tak, + 2lagaaosT + 16a2,72)7°
+ (Ta3y + 2layzai3(1 — 1) + 16a34(1 — 7)%)(1 — 7)°

where the numbers a;; are defined above. Minimizing this functional with
respect to 7 € (0,1), we determine the coordinates of the point M’ which
is new node for the new grid; for this purpose it is necessary to solve an
equation of the fifth power with respect to 7.

MO M‘/] MJ

Fig. 4: The distance between graphs
of the cubic polynomial and its linear interpolation.

For numerical solution of algebraic equation the Newton method was
used, and as an initial approximation the point of the edge [My, M ;] was
taken, in which the distance between the graphs of the cubic polynomial
and its linear interpolation is maximal, as shown in Fig. 4. As a rule, this
approximation is rather good, and for correction of it with a reasonable ac-
curacy it is sufficient to make only several iterations of the Newton method.

Besides @;,,, other functionals have been considered. So, for instance,
a number of functionals have been considered which approximate residual
functional from C[0,1]. However, test computations have shown that the
results differ insignificantly, but the time of computation when constructing
the embedded grid increases greatly. Apparently, this is connected with the
fact that the node values u; themselves are results of computations and
have the accuracy of the order mjxx{h%} where h; is the length of J—th

edge.
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3 Program realization of the algorithm

A complex of programs in language C for numerical solution of convection-
diffusion boundary-value problem (1)—(2) has been designed on the basis of
the algorithm described above.

For numerical solution of convection-diffusion boundary-value problem a
scheme with the second order of accuracy has been used, which generates a
system of equations with M-matrix, satisfying discrete maximum principle.

The solution of the obtained system of linear algebraic equations has
been carried out by iterative Gauss-Seidel procedure under special ordering
of equations and unknowns. The number of iterations on each embedded
grid was fixed and did not exceed 15.

In Fig. 5 — 20 some results of operation of the procedure of construction
of embedded grid for solution of boundary-value problem under z € [0, 1],
y € [0,1] and u(z,0) = u(z,1) = u(0,y) = u(l,y) =0, e = 1073 are shown.
The initial triangulation was generated by uniform division of the sides of
the square into 8 equal intervals with subsequent diagonal division of each
elementary square into triangles. An edge was not divided, if the module of
the maximal on the edge difference between linear and cubic splines did not
exceed g, = 1073; for solution of finite-dimensional problem on each of the
grids the Seidel method with fixed number of iterations (=50) was used.

Fig. 5 — 8 show the character of arising grids under ¢, = ¢. In figures
9 - 20 the information on the sequence of grids arising under ¢, = 50¢ is
reflected;

Fig. 9 — 12 show general dynamics of the sequence of grids;

Fig. 13 — 14 show the changes of grid at two last steps in the square

[0.0, 0.125] x [0.0, 0.125], eightfold enlarged;

Fig. 15 —16 show the changes of grid at two last steps in the square

[0.5, 0.625] x [0.0, 0.125], eightfold enlarged;

Fig. 17 — 18 show the changes of grid at two last steps in the square

[0.875, 1.0] x [0.0, 0.125], eightfold enlarged;

Fig. 19 — 20 show the changes of grid at two last steps in the square

[0.875, 1.0] x [0.375, 0.5], eightfold enlarged.

In the course of joint researches in Augsburg Technical University series
of test computations on different computers and under several operation
systems has been carried out. Main objective of these computations was
to estimate real time necessary for solving the considered boundary-value
problem.

In our opinion, some of these results are rather interesting; they are rep-
resented below in the form of a table.
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| HOSTNAME || TYPE | MHz| MB [SYSTEM | 1 | 2 [ 3 |
MALAGA R4000 150 | 96 IRIX |58.9|3.75|187.0
SEVILLA R8000 75 [ 512 | IRIX64 [42.8[3.88[171.0
MARBELLA || PENTIUM PRO | 200 | 128 | LINUX [20.2]2.40[ 56.7
ALCALA PENTIUM II | 266 [ 128 | LINUX [13.8[1.68] 71.7
ZARAGOZA [ ALPHA 500 | 128 | D.UNIX | 9.7]1.10] 36.6
LACORUNA [ ALPHA 533 256 | LINUX [11.5]1.30] 47.6
BURGOS ALPHA 533 | 256 | LINUX [11.7]1.28] 47.9

Here the first five columns contain general information about the comput-
ers which were used in the computational experiment; this information has
been kindly granted to us by professor U. Riide.

C-version of the program contains four main parts:

(I) procedures of construction of initial triangulation for §2;

(IT) procedures of formation of the global system of linear algebraic equa-
tions;

(ITI) procedures realizing the iterative Gauss-Seidel process with special or-
dering of equations and unknowns;

(IV) procedures which construct embedded grid by above method using the
solution from (III).

The tests have shown that at the beginning of the computational process
the time of execution of each of I-IV parts of the C-program is proportional
t0 Npoint Which is the number of points of the initial grid. Therefore, the
time of execution of each part of the program in the course of the test
computations was divided by Npoint = 106 after the statistical processing
of several numerical experiments. Here “time of execution” means the user
time obtained by the command “time” of UNIX operation system.

The column 1 contains the time of computations for the parts I, IT on
a regular grid. The column 2 represents the time spent on realization of
one full iteration in the Gauss-Seidel method when solving the system of
linear algebraic equations. And, finally, the column 3 contains total time of
computation of the stages IV and II of C-program.

The computations have been performed for the case when

2=100,1]x[0,1], e=0.001, by =1, by=0, f=1, g=0.

One can see from this table that the efficiency of a computational com-
plex strongly depends on both the parameters of computer and the type of
operation system.
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Fig. 5: Changes of grid at step 1; ¢ = 1075,
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Fig. 6: Changes of grid at step 2; ¢ = 107°.
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Fig. 7: Changes of grid at step 3; ¢ = 1075,
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Fig. 8: Changes of grid at step 4; ¢ = 1075,
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Fig. 9: Changes of grid at step 1; € = 0.05.

1.0

09 1

0.8 |

0.7 1

0.6 ¢

0.5

04 |

0.3 1

0.2

0.1 [ |

0.0 . . : 7 . } } }
00 01 02 03 04 05 06 07 08 09 1.0

Fig. 10: Changes of grid at step 2; € = 0.05.
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Fig. 11: Changes of grid at step 3; € = 0.05.
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Fig. 12: Changes of grid at step 4; € = 0.05.
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Fig. 13: Step 3; ¢ = 0.05 (vicinity of the origin).
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Fig. 14: Step 4; ¢ = 0.05 (vicinity of the origin).
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Fig. 15: Step 3; € = 0.05 (at the bottom).
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Fig. 16: Step 4; € = 0.05 (at the bottom).
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Fig. 17: Step 3; € = 0.05 (the right-hand bottom corner).
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Fig. 18: Step 4; € = 0.05 (the right-hand bottom corner).
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Fig. 19: Step 3; ¢ = 0.05 (the right-hand boundary).
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Fig. 20: Step 4; ¢ = 0.05 (the right-hand boundary).
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