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A difference scheme for convection-diffusion problem
on the oriented grid

Kalpush T.V., Shaidurov V.V.

Introduction

The work is devoted to a difference method for solving two-dimensional
problem for convection-dominated convection-diffusion equation. This prob-
lem is related to the class of singular disturbed problems and it often has
a solution of a boundary layer type with strong increase of derivatives in a
vicinity of certain lines and points [1, 2, 3].

An application of the finite element method or difference methods for
such problems has some specific features in comparison with the boundary
value problem when convection and diffusion items have the same order.
First, in zone of boundary layer it is necessary to take into consideration
the boundary layer type of the solution [2] or to condense grid to com-
pensate strong increase of derivatives [3]. Second, in zone of smoothness,
when the influence of higher derivatives is low, we should take into account
that the equation becomes the convection one (called here as reduced equa-
tion), while the area of solution dependence in points of this zone tends to
a piece of reduced equation characterictic. Third, the standard difference
schemes and the schemes of the finite element method with central differ-
ences lose a stability, while the schemes with directional differences possess
computational diffusion which is essentially greater than the physical one
and it disturbs even qualitative description of solution, not to mention the
quantitative similarity. In contrast to the physical diffusion, the compu-
tational one differs both in various space points and in various directions
in the same point. The role of the ”longitudinal” computational diffusion,
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i.e., the diffusion along the convective flow, is already evidently seen in one-
dimensional case, where it studied well and give the same consequences as in
two-dimensional problems. In section 3, we define more precisely the influ-
ence of the "transversal” computational diffusion, which ”washes-out” the
difference solution in nontangent directions to convective flow. In certain
difference schemes it essentially exceeds the physical diffusion, therefore to
check it, we introduce the value, which is called the criterion of grid orien-
tation along the convective flow.

In section 5, we state the algorithm of successive strengthening orien-
tation for an arbitrary grid without new inner nodes addition and without
node coordinates modification. In section 6, this algorithm is illustrated
with an example of grids with uniform arrangement of nodes, but more and
more oriented along the flow at the expence of changing stencil topology of
difference scheme.

In section 4, we suggest the method of construction of inverse-monotone
second-order finite-difference scheme. The combination of these properties
is usually reached by special matching of the flow direction and the ar-
rangement of grid nodes. Such, for example, is Crank-Nikolson scheme for
convective term approximation with the arrangement of two nodes along the
flow in the characterictic method. The use of the strengthening orientation
algorithm provides this opportunity for arbitrary arrangement of the grid
nodes.

1 The difference problem statement

Let us introduce Euclidean distance |z — 2/| = ((z — 2/)% + (y — y')?)Y/?
between two points z = (z,y) and 2’ = (z/,9') in R?. Let 2 = {z = (x,y) :
0<x<1,0<y< 1} be opened unit square with boundary I".

We shall use notation C*(D) in an arbitrary subdomain D C (2 for the
class of functions having continuous k-th partial derivatives on closure D
with the norm
oortazy,

l[ully,p = max max D1 Pz

ar+az<k D

where a1, as are non-negative integers. Assume that C°(D) = C(D).
Consider the problem

—eAu + by — Ou

o +b2 =f in £ (L.1)

u=g on I, (1.2)
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where ¢ < 1 is a small positive parameter; functions by, by € C(£2) and the
right-hand sides f € C(£2),g € C(I') are known. Thus, we have a solvable
boundary value problem for the elliptic second-order equation [4].

In a subdomain, where the second derivatives are limited, their influence
is low due to the small parameter €. Therefore the equality (1.1) comes to the
equation of first order, which characterictic system of ordinary differential
equations corresponds

dx _ dy _ du . (1.3)
bl(z7y) b2($7y) f(xvy)

Its solution is the set of characteristic curves or simply the characteristic.
In each points z = (x,y) € §2 the vector t(z) = (b1(2),bo(z)) touches the
characteristic passing through this point. Therefore, we call it as character-
istic vector, while the opposite vector as anticharacteristic one. We assume
that a direction is a corresponding vector of unit length. In particular, the
direction (b + b3)~'/2(by,by) with b? 4 b2 # 0 in point (z,y) is called as
characteristic direction, while any other direction, that does not coincide
with it or with the opposite one is called as direction that ”transversal” to
characteristic one.

2 The difference approximation of convective item
on an arbitrary trianqular stencil

Consider the triangle with vertices

2t = (xhyt)a Zs = (xsays), Zr = (Irayr)a

Zt

Fig. 1: The triangular stencil and the new local coordinates.

at a distance not greater that h from each other and not lying on one
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straight line. It is suppose that b?(z;) + b3(2;) # 0 and anticharacteristic
vector — ¢(z;) lies in angle Zz,2;2, (see Fig. 1).

Let construct the following approximation for this tree-point stencil with
the help of indefinite coefficient method [12] :

ou ou
by — o + by — oy ~ au(z) + Pulzs) + yu(z) (2.1)

in node 2;. Suppose that u belongs to C®(B(z, h)) in the closed ball B(z, h) =
{z:|z— 2| < h}.

To simplify the problem, we introduce new local Cartesian coordinates
(2',y") with the origin in z; and with axis Oz’ along —#(z;) (see Fig. 1).

The vector b = (by,by) in new coordinates comes to & = (b],b,) with
coordinates b} = (b2+b3)/2, by = 0. Points z, = (xs,ys) Zr = Ty, Yr), 2t =
(¢, y¢) comes to z. = (xL,y), z. = (al,y.), z; = (0,0), and function wu(z)

does in u(z’) respectively. The item in the rlght hand side (2.1) comes to
(b2 + b3)'/?0a/0z'. Let take Taylor series with respect to z, = (0,0) for
function u(z’), summate them and u(z;) with indefinite weights «, 3,

au(zt) + Pulzs) + yu(z) = (o + B+ 7v) u(z)

’ ’ 8_ 8” ’
R R 024
+ ¢ o Q(Zt) + ¢ 81:—83/(29 + ¢ a—yz(zi) + O(h*)

where

1 1
c’l = —ﬁx’sz + sya?,

2
ﬁ Ty, + YTy, (2.3)
= —ﬂy 1 u’

Here, we can distinctly see the computational diffusion ¢, 82a/dxz'> along
the characteristic line, diffusion ¢} 9%a/dy’ % in perpendicular direction, and
diffusion ¢, 8%@/0x'0y’ in some intermediate directions.

Since h is small enough, in order to get at least the first order of approx-
imation, we need the following equalities:

a+p+v=0,
Bl + yxl = b, (2.4)
By. + vy, = 0.
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The matrix’s determinant of this system equals double square of triangle
Nz zszr, which is denoted as S. Since the triangle does not degenerate into
a line or a point, the determinant is not equal to zero and the system has
the unique solution

a = (ba(x, —xs) = b1(yr —ys))/ 5,
ﬁ = (bl(yr yt) - bZ(xr - xt))/S7 (25)
v = (ba(xs —x¢) — b1(ys —41))/S,

where S = (yr — ye)(@s — ) — (T — 24)(Ys — Yt) = Yo 2y — T}y
Using 8 and v in (2.3), we obtain:

2 2
Cll y;’ /sfy{s ,r
yT s_ rys
!0
/ ysy'r‘ ! !
Cop = —————\xr. — X s 2.6
2 y}m;—m;y;( s r) ( )
!0
YsY
Cé: ST/ /(y;_y;)'

! !
YrZs — T Ys

Hence, to decrease the coefficients ¢, and ¢4, we need to minimize the fol-
lowing value

Kr(z) = y.y,/S (2.7)

which is called the index of triangle’s orientation Aziz,z, in point z;.

It should be noted that if y. or y.. is zero, then the approximating
transversal diffusion equals zero. That is the case, for example, in the
method of characteristics.

3  Construction of inverse-monotone second-order
finite-difference scheme

To construct the difference scheme, we first introduce the discrete set 2, of
nodes in £2 and the discrete set I, of nodes on I'. Assume that 2, = £2,Ul},.
For each node z € §2;, we form the subset N, of some nearer nodes of 2;,.
Denote by h, the local radius of this subset:

h, = max |z — 2’| ~ h.
z'€N,

Let us take an arbitrary inner node z € (2;, and introduce local orthog-
onal coordinates £, n with origin in z , with axis O¢ along ¢(Zz) and axis On
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n
G = (&,m)

€ = (0,0) e/ ¢

G2 = (&2,m2)

Fig. 2: The local coordinates (£,7n) and the arrangement of nodes (o, (1, (o.

to the left of ¢(z) (see Fig.2). In this coordinates equation (2.1) comes to
another one:

« ou oun <
—c Al — d=— — = 1
e Al o€ + 0817 f (3.1)
in the h,-vicinity of node z. Here for any function w(x,y) we put
w(&,n) = w(x(&n),y&n) (3:2)

and introduce new functions

b1 (2)b1(€,m) + ba(2)ba(€, 1)
t(2)] ’

(&) = bz(f)bl(&n|)t(2>b|1(f)bz(£,n);

operator A = §2/9¢% 4 82 /0n? has the same form but in new coordinates.
Further we study two situations separately: ¢ < ¢ 2h§ and cf2h§ <e
with some constants cg, ¢; independent of ¢, h;. Let start with the first one.
3.1. Large hz. Tree-point stencil.
First situation means that

d(§,m) =

hg Z CO\/E. (33)

Suppose that u belongs to C3(B(z,hz)) in the closed ball B(z,hz) = {2 :
|z — zZ| < hz} and has bounded norm

I3, B0,h.) = llull3,B(z,h.) < c2 (3.4)

with constant ¢, independent of hz and e.
Our goal is to derive an equality



8 Kalpush T.V., Shaidurov V.V.

of
23

We consider special arrangement of nodes. It is supposed that o = (0,0);
node (; lies in first quadrant: £&; > 0, 77; > 0; and node (5 lies in fourth one:
& > 0, ny < 0. Let us take Taylor series in nodes (1,2 with respect to (o
for function @, f :

of

agii(Co) +oni(Gr) + aaii(C2) = f(Co)+ P17y (C0)+ﬁ2 (Co)+0( ?). (3.5)

) = 2(G) + & 5 Go) + 050 G) + £ 55 (@) "
g () + i o @)+ 0(h)
and
FlGo) = ~d(6o) 52 G0) + 0(12), (3.7)
O (60 = 260 2 o) i 2 o)+ 0 (6 Do)+ O, (39)
aé. 0 f 0 85 0 0 652 0 6 0 0 -
O (60 = 226 2 o)) e o1+ 5 (6 Do)+ 0. (39)

Now use these decomp051tions in both sides of (35) In order to get at least
first order of approximation, we need to cancel terms @, 9u/9¢, da/0n:

ap+a; +as =0, (3.10)
a1&y + by = —d(Co) — A1 5(Co) 52 (Co) (3.11)
a1 + aong = [31 7€ (Co) + ﬂz (Co) (3.12)

Two more equalities follow from elimination of 82u/ &2, 0% /O 0m:

%(041&% + aé3) = —d(o) B, (3.13)

a1&im + azéany = —d(Co)Ba. (3.14)

In principle, we get 5 linear equations for 5 unknowns. Later we shall see
that |B1], |B2| are small enough and

{ = (B, B2) € Al (3.15)
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It gives us a possibility to change the right-hand side in (3.11) and —d(¢o)
n (3.13), (3.14) by —d(¢) without violation of the second order of approxi-
mation:

&+ agy = ~d(0), (3.16)
1 -
5(0415% +a283) = —d(Q)Bn, (3.17)
a1 + azéane = —d(()Ba. (3.18)
Since o(¢p) = 0, the same modification may be done in (3.12) without

violation of the second order of approximation:
ain + Qgng = U(E)- (3.19)

Equalities (3.10), (3.16), (3.19) give the system with respect to «; with
unique solution

Qo = (( n2)d (C:) (&1 — &)a(C))/(2s21),
(U2d(€) +&0(0))/(2521), (3.20)
= (md({) — &0(C))/(2521), (3.21)

where so1 = (€am1 — £112)/2 is the area of triangle A{p(2(;. Due to (3.15)
and equality o((p) = 0, the inequalities

0({)] < chs < d(C) (3.22)

hold. Therefore when 7, is comparable with &, i.e., n1 ~ &1, we get

a < 0; (3.23)
analogously from comparability of |ns| with & it follows that

a1 <0. (3.24)
Both previous inequalities involve

ag <0. (3.25)
It would give M-property of the difference operator in the left-hand side of

(4.5).
Now let us use (3.20) in (3.17) and (3.18):

Br = ——((mE3 — ma€d) + &162(& — €1)0(C)/d(C)), (3.26)

4591
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- 1
289

2

((&2 — &)mmz + &&2(n2 — m)a(€)/d(C)). (3.27)

From arrangement of (; it follows that
1
0< i < 5 max{ér, &} < hs/2, (3:28)

n2 < B2 <1, |Ba] < hs. (3.29)

So, you see that 31,32 are small enough and was found by unique way
with (3.26), (3.27). After that one can find «a; from (3.20) with the help of
equality

d(¢) = d(r, Ba)-

Finally, in order to get second order of approximation we need coefficient
Agg before 9%a/0n? in (3.6) to be small enough:

ni n3

‘A22| = 051?1 + 012? < Cgh%. (330)
Since Ago is positive, we need only
Ags = —muma(m — n)d(0)/ (ds21) < esh?. (3.31)

Let C is cross-point of edge (1, (2 with axis O, then

1
s21 = 5 (m —12)€- (3.32)
Combining it with (3.31) we get

—”;—Z?d(é) < csh?. (3.33)

In principle, 5 ~ hz. Therefore we need
—mg ~ cah. (3.34)

From the first sight it seems to be unusual since the left-hand side has
only second order of smallness. But in the next section we shall describe
an algorithm of grid reorientation which gives this inequality and (3.31) by
regular way. Therefore we consider inequality (3.31) to be valid.

3.2. Small h;. Five-point stencil.

Second situation means that

crhs < /Z. (3.35)
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Let us again try to get (4.5). But this time we need to keep in consideration
more terms because ¢ is not O(h2) now. Therefore instead of (4.7) we have

0%u 82”

FlGo) = (o) g (o) - a2 @) 5.7 (G) (3.36)

23

It gives (3.10), (3.11), (3.12), (3.14) to be the same, and (3.13) comes to the
following:

%(alﬁ? + 083) = —d(Co)B — e (3.37)

Let us repeat considerations (3.15) — (3.27). We obtain the same «; from
(3.20) and B2 from (3.27). But we get another §; and Ass :

B = (77153 - 7725%) —¢e/d(Co), (3.38)

1
8521
Azy = —mma(m — n2)d(()/(8s21) —e. (3-39)

From arrangement of (; it follows that

—e/d(¢o) <1 < max{fl,ﬁg} —¢/d(¢p). (3.40)

Due to (3.35)
61| < hz/d(Co). (3.41)
So, B1, B2 are of order O(h;) and are found by unique way from (3.27),

(3.38). After that, one can find a; from (3.20) with the help of equality
d(¢) = d(f1,52). As a result, we obtain

Q@)
24
f«@+Am82mﬁ+0wb

aoii(Co) + (1) + a2ii(C2) = f(Co) + A
(3.42)

0
+ B2

In principle, we can make first item in the right-hand side of (3.39) to be
small enough due to algorithm of reorientation. For example, let us demand
that R
—mnz(m — 12)d(¢)/(8521) < e. (3.43)
It implies
— < A22 <0. (344)

In order to cancel item A20%%/0n? in the right-hand side of (3.42), let us
introduce one more triangle with vertices (o, (3, (4 (see for Fig. 3); node (3



12 Kalpush T.V., Shaidurov V.V.

lies in third quadrant: 3 < 0, n3 < 0; node (4 lies in second one: {4 <
0, n4 > 0. Consideration like (3.36) — (3.42) gives one more equality
!~ !~ !~ r ! af
agti(Go) + 4u(Ca) + azt(Cs) = f(Co) + 516—€(C0)
oF o (3.45)
a
+ ﬂéa—n(Co) + A/zza—nz(Co) +O(h%)
with coefficients

ap=—(m— Tlsgd(C/)/(4543), (3.46)
oy = —773d(~C/)/(4$43), (3.47)
g = nad(C’) /(4543), (3.48)
B1 = —(na&3 — 13€3) — €d(Co)/(8s43), (3.49)
ﬂé = *774773(53 - 5%)/(4543), (3~50)
Aby = mamz(na —n3)d(¢")/(8s43) — &, (3.51)
n
Ga= (547774) ¢ = (&1,m)
I =00 7
\\\\ - — E ¢
Gz = (237773) o G2 = (§2,m2)

Fig. 3: The local coordinates (§,7n) and the arrangement of nodes (o, ..., (4.

where sg3 = (9364 — na&3)/2 is the area of triangle Angnyns. This time,
coefficient A%, consists of two negative items and

Apy < —¢ (3.52)

due to arrangement of nodes (4, (3. Let us combine (3.42) and (3.45) with
weights d1, d2 in order to cancel term 921/9n%((o):

01A99 + (5214/22 =0. (3.53)

For scaling we take also
01+ 62 =1 (3.54)
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This system gives unique solution

01 = Ay /(Ahy — Azz) >0,

(52 = 7A22/(A122 — A22) S 0, (355)
when
Ajy # Aso. (3.56)
The last is guaranteed when, for example,
nsna #0 or mmnz #0. (3.57)

Due to (3.52), (3.54) we get

af
9¢

Of

4
> afi(G) = F(Go) + 815z (Go) + 85 5 gy ) +002) (3.58)
=0

where

ap = d1ag + 204, > 0, o = d1aq <0,
0/2/ = 51042 < 0 Oég = 5204% < 0 OZZ = 520421 < 0 (359)
= 0151 + 621, By = 61052 + 0235.

The signs of o provide the inverse monotonicity of difference operator in
the left-hand side of (3.58).

4  The algorithm for the orientation strengthening of
the difference grid

Let us consider an arbitrary opened limited, and connected polygon 2 € R2.
We construct its triangulation 7, i.e., we cut this polygon into the finite
number of opened triangles T3, i = 1,...,m, so that their closure T'; cover
£2:
p— m —
N=UT;. (4.1)
i=1
This triangulation should be consistent, i.e., any two different closed
triangles T; and Tj from J, i # j, either have no common points, or only
one common vertex, or have the whole common side.
Let us denote by (2}, a set of all vertices of triangulation triangles, which
are called by nodes. Suppose that

thﬁhﬂg, thﬁhﬂf‘. (42)
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Our goal is to describe the algorithm of triangles reconstruction in order
to decrease the computational diffusion across characteristic lines of differ-
ence analogue to necessary limits. In section 3, we introduce a special local
value to control it.

There are many ways of grid construction of different complexity. The
grid are condensing in the required subdomains or oriented with some
method. But all of them are connected either with the new nodes addi-
tion, or with the inner nodes coordinates modification.

We propose the algorithm that does not change the coordinates of in-
ner nodes, but it makes better the desired quality of triangulation due to
reconnection of the nodes among themselves.

Now, we consider the initial consistent triangulation J’. One of the
algorithm cycles consists of step-by-step sorting out of inner apexes z; €
J' NN, i=1,..,n, by means of possible triangles reconstruction. Let us
describe one step of this algorithm.

Let ¢ be inner node z; = (z;,y;) of the consistent triangulation J’ with
anticharacteristic vector —¢(z;), which we reconstruct to perform the in-
equality

) < .
,nax Kr(z) <4 (4.3)

with some constant §.

Fig. 4: The anticharacteristic direction crossing the boundary.

1. If this vector is directed along one of the triangle sides, with the origin
in this vertex, then local criterion (K, (z;) = 0) is considered to be valid and
we complete the step without changing the triangulation, i.e., the result J”
of this step coincides with J".

2. If this coincidence (which is unlikely in real problems) does not take
place, then there is triangle T, € J’ with vertex z;, for which vector —#(z;)
is enclosed between its sides. Let construct a ray in this direction to cross a
side of this triangle, which is opposite to vertex z;.
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Futher, there are two variants.

2.1) The triangle side crossed lies on the boundary I' (Fig. 4). In this
case we add a new node zy to I , which is the intersection point of the
constructed ray and boundary I'. In this case we obtain the ideal situation,
Kr(z;)=0.

2.2) The triangle side cross is the inner one (Fig. 5). Since triangulation
is consistent, there exists one more triangle with the same side.

Zi

a)

Fig. 5: The anticharacteristic direction crossing the inner side.

Further, there are two variant as well.

2.2.1) The obtained quadrangle is convex (Fig. 5.a). From two available
variants we choose such that gives criterion Kr(z;) to be smaller.

2.2.2) The obtained quadrangle is not convex (Fig. 5.b). Then we com-
plete the step without changing the triangulation.

In this way, the process is periodically repeated for all nodes z of (2)
where K7r(z) > ¢. It should be pointed out that the effectiveness of algorithm
will be better, if we move forward by front through inner nodes along the
convective flow.

5 The numerical experiment

For the numerical experiment we considered problem (2.1) — (2.2) with
coefficients by = —1, by = 0.7. The function g is equal to zero on the
boundary I" except for two sections

I ={(z,y) : x =0, y € [35/40,39/40]}

and
In={(z,y) : 2 =1, y € [1/40,5/40] }
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I

I

Fig. 6: The characteristics of the reduced equation.

(see Fig. 6), where g equals 1. The right-hand side is identically equal
to zero on the 2. For ¢ = 0 the exact solution of reduced problem is the
function uo which is equal to 1 in band ¥ and 0 outside it (see Fig. 7, 8).
The band ¥ represents the parallelogram with sides I and I%.

L]

Fig. 7: The exact solution. Fig. 8: The isolines of exact solution.

In square 2 = {(z,y): 0 < 2 < 1,0 < y < 1} we build the uniform
triangulation with the mesh-size h = 1/n by means of two families of lines
x; =1th, y; = jh, 1,5 =1,...,n — 1, and then construct the diagonals in the
obtained elementary squares with angle 7/4 to axis Owx.

Then we build the grid aproximation in the following way. To aprox-
imate items Au we use on the uniform five-point stencil ”cross”. As the
aproximation of item by du/0x + by Ou/Jy, we realize it on the constructed

triangulation.
This triangulation is unsuccessful (Fig. 9) in term of the value of orien-

tation. Solving the problem for n = 40 with this triangulation, we do not



A difference scheme for convection-diffusion problem 17

O\

\

O &
/\

T

\

Fig. 9: The inital triangulation.

Fig. 10: The grid after the first

reconstruction.

.

Uity
,§§&_ _pzl_‘,r 141/ “ |
¢$§?§§§§Qf§§lﬂl§="

L
S
=

.

Fig. 11: The numerical solution
on the inital grid.

i

Fig. 12: The isolines of numerical
solution on the inital grid.

obtain even the qualitative similarity solution. The considerable ”transver-
sal” calculation diffusion appeares which washes out the solution (Fig. 12),
and obtained error equals 60% (Fig. 11).

Further the first reconstruction of grid is made, which we implement
according to section 5. It only reorients some diagonals without coordinates
modification of inner nodes (Fig. 10). Solving again the problem for n = 40
with this triangulation, we obtain the considerable improvement of the
solution quality. The essential decrease of computing diffusion took place
(Fig. 14), and the obtained error equals 20% (Fig. 13).

After the second application of the reorientation algorithm the new
nodes on the boundary of domain appear, which do not involve the increase
of the unknown values in consequence of known boundary conditions.
Apart from that, the recombination of inner grid nodes with each other
(Fig. 15) consequently decreases Kr(z;) in every inner nodes. The obtained
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Fig. 13: The numerical solution Fig. 14: The isolines of numerical solu-
after the first grid reconstruction. tion after the first grid reconstruction.

Fig. 15: The grid after the second Fig. 16: The grid after the third
reconstruction. reconstruction.

error is not greater than 10% (Fig. 17) and we note some decrease of the
solution wash-out (Fig. 18).

After the third reconstruction of grid (Fig. 16), we obtain the consid-
erable improvement of solution. Apart from similar qualitative behavior of
the solution (Fig. 19), we also obtain good quantitative similarity.

Thus, this numerical experiment illustrates the successive improvement
of numerical solution on first three stages of the grid reconstruction due to
strengthening of the orientation along the characteristic curves.
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e
Fig. 17: The numerical solution Fig. 18: The isolines of numerical solu-
after the second grid reconstruction. tion after the second grid reconstruction.
[
B ]
Fig. 19: The numerical solution Fig. 20: The isolines of numerical solu-
after the third grid reconstruction. tion after the third grid reconstruction.
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