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A two-dimensional nonuniform difference scheme
with higher order of accuracy

Bykova E.G., Shaidurov V.V.

Introduction

The present paper is devoted to construction and justification of nonuni-
form difference schemes of higher orders of accuracy for two-dimensional
boundary-value problem for elliptic type equation on a rectangle. The gen-
eral idea of construction of such scheme is similar to that in the paper [1],
where it is stated for ordinary differential equation, but the increase of di-
mensionality has complicated both the scheme and the proof of its accuracy.
Nevertheless, the fourth order of accuracy in uniform norm is proved for the
constructed scheme, and this fact is illustrated with numerical examples.

As it is in one-dimensional case, the difference scheme is similar in struc-
ture to the system of the method of extrapolated equations by U. Riide [2]
for finite elements. However, the proof of accuracy of the constructed scheme
differs from substantiation of U. Riide method based on minimization of
functional.

Let recall that the standard difference method with the second order of
accuracy on a rectangle gives a system of linear algebraic equations with
five-diagonal matrix under corresponding ordering of unknowns. The scheme
constructed here results in a system of equations with nine-diagonal matrix
preserving the basic properties: positive definiteness, symmetry and positive
invertibility.

Let also recall that the term “nonuniform scheme” had appeared due
to different rules of construction of grid equations in neighbouring nodes
as distinct from uniform schemes [3], where the rule of construction is the
same for all nodes of the grid.
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1 Boundary-value problem and its nonuniform
difference approximation

Let 2 be unit square (0,1) x (0,1) with boundary I". Consider a boundary-
value problem

—Au+du=f in (2 (1.1)

u=g on I (1.2)

with smooth enough given functions
d, f € C*(92), (1.3)
d>0 in 0. (1.4)

These conditions ensure unique solvability of the problem. Suppose the so-
lution to be smooth enough:

u € C%(02). (1.5)

For difference approximation of the problem (1.1) — (1.2) construct an
uniform difference grid

wh:{zi7j:(mi7yj): Z’z:Zh, y]:Jha i:O,l,...,n, j:0717"'7n}

with the step h = 1/n and even n > 4. Also, introduce the set of inner
nodes

wp={z;€w, : i=12,...,n-1, j=1,2,...,n—1}

and divide it into the sets of nodes only with even indices, only with odd
indices and with indices of different evenness (the first index is even and the
second is odd, or vice versa):

Woo :{Zi7]’ €Ewp: 1=0,2,...,n, j=0,2,...,n}, we = wWoo \ I}

wir ={z; €wr: i1=13,...,n—-1,7=1,3,...,n -1},

wo1 :{ZL]' Ewp: t=0,2,...,n, j: 1,3,...,’[1,—1}, wo1 2501\[‘,
W10 = Wh \ @Woo Uwi1 UWp1), wip =wio \ I

The standard finite difference approximation of the equation (1.1) con-

sists in change of the second derivatives with respect to z and y with the
second central differences

u;;(w,y) = (U,(ZIZ - hay) - QU(J,',y) + U(J,' + hay))/h27 (1 6)
use (2,9) = (u(w,y — h) = 2u(e,y) + ulz,y + h)/h. '
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As a result, the following grid problem is obtained:
Lhuh = f in wy,
(1.7)
u =g on =TI NGy,
with the difference operator

L40(2) = =v35(2) = v () + d(2)ol2) (18)

The second order of approximation is established by Taylor-series expansion
of the solution u [3], and on the basis of difference maximum principle [3]
the stability of solution in the grid norm

lvlloo,, = max |v(2)|
ZEWH

is proved. On the whole, this gives convergence of the approximate solution
u” of the problem (1.7) to the exact solution u of the problem (1.1) — (1.2)
with the second order of accuracy:

« 4 *
" = ullo iz, < exh?fufl (1.9)

here the following denotation is used:

(k) _
%= 3

0<i+j<k

Ot
Oxt0yJ

0,2

with integer £ > 0 and

[l 0,2 = sup [ul.
2

For construction of a scheme of the fourth order introduce an operator
with doubled step

L2h'U(:L’7y) = —(’U(CE - 2h7y) + ’U(:E,y - 2h) - 4’[)(:17,y)
+v(z + 2h,y) + v(z,y + 2h)) /40 + d(z, y)v(z, y)

only in even nodes wqg.
With the preceding notations consider the difference problem

L'u" = f in wy \ woo, (1.10)
Lt — L2 =0 in woo, (1.11)
uh =g on . (1.12)

“)Here and below we denote by a symbol ¢; with integer indices ¢ various con-
stants independent of x and h.
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This grid problem as well as (1.7) contains (n + 1) unknowns and (n + 1)
equations. In even nodes nine-point stencil is obtained (Fig. 1. b), and in
other nodes the scheme has a standard five-point stencil (Fig. 1. a).

1

1n2
_1 L
2
_h t —72
_1 11 1 1 1
h? hZ  An? h2 h? 1n?
t 4 | t t 3 t |
h2 +d h2
L L1
_h_12 W2
a) b)
L1
4h2

Fig. 1: Stencils of nonuniform difference scheme in even (b) and other (a)
nodes.

For the functions defined on {2 apply the denotation
v;,; = v(xi,y;) = v(ih, jh).

In the equations (1.10) — (1.11) eliminate the boundary values (1.12).
The remaining unknowns and equations number from 1 to (n — 1)? in
lexicographical order determined by the inner nodes 211, z1,2,...,21,n-1,
22.1,--.,%n—1,n—1. As a result we obtain a system of linear algebraic equa-
tions with symmetric sparse matrix A"

Ayt = Fh (1.13)

By way of illustration in Fig. 2 the structure of nonzero elements of the
matrix A" for the step h=1/8 is given.
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Fig. 2: Structure of nonzero elements of the matrix A'/®.
The sign @ marks a positive element,
the sign B marks negative one, and their absence implies zero element.

For theoretical consideration it is useful to write down the system
(1.10)—(1.12) in vector form as well. To do this, number unknowns and
equations from 1 to (n + 1)? in lexicographical order determined by the

nodes 2o, 201,---»20n, 210, - - - » 2nn- As a result, we obtain a system of lin-
ear algebraic equations with a matrix B"
B"Wh = G". (1.14)

2 Stability and solvability of the grid problem

Let proof that matrix of the system (1.13) is positive definite.

Theorem 32. If the condition (1.4) is satisfied, then the matriz A" of the
system (1.13) is positive definite.

Proof. Multiply left part of each equation (1.10) and (1.11) by hu”(2) with
corresponding z and sum over all z € wp:

h Y ()Ll (z) = b Y u(2) LMl (z). (2.1)

ZEWH ZEwWoo
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Set u" = 0 on 7, and for the obtained expression apply difference analog of
the first Green function [3], going over to index notations:

h Y ul(z) Ll (2 —thl, ult)

ZEwWh 4,j=1
(2.2)
+ Z Ui 1,1)2 + (U’il] o U’Z]'*l)2] ’
3,j=1
n/2—1
2h Y w2 LM (2) =20 Y o (uby ;)
zZEwoo 4,j=1 (23)
1 n/2
+ﬁ [(ugmj - ugi—2,2j)2 + (Ugmj - “gi,2j—2)2]'
i,j=1

For real numbers a, b the equality a® + b? > (a + b)?/2 is true, from which
follows that

(Ugi,zj - Ugiq,zj)z + (ngz] - ugiﬂjfl)z
h h h h
+(ug;_1 95 — u2i72,2j)2 + (ug; 051 — U2i72]’72)2 (2.4)
1 .
<5 [(Ugi,zj - Ugi—2,2j)2 + (Ugi,zj - Ugmj—z)z] .

-2

With account of this inequality the expression (2.1) is estimated from below
by the value

3« A
2 Ly —wiy )+ (uiy = wiy )]
e (2.5)
n—1 n/2 ’
+h Z di:j( z] —h Z da; 127 UZz 2]) :
i,j=1 i,j=1
The sum thﬂ d; j(uf;)? contains all the terms hZ%il dai 25 (ub; 5;)%

Therefore the dlfference

n/2 n/2

DD dg(ul ) = h D oy (o)

ij=1 ij=1
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is nonnegative. The first sum in (2.5) is estimated from below by means of
the equation [3]

n n

16h° Z (U'zh,j)z < Z [(U?j - U’?—l,j)Z + (U'zh,j - u?,j—l)z] ) (2.6)

i,j=1 i,j=1

which is an analog of embedding of norms from H (£2) into L?({2). Finally,
the expression (2.5) is estimated from below by the value

12h ni: (ufs)? =12 ) (u"(2))*. (2.7)

i,j=1 2Ewp,

Comparing it with (2.1) we arrive at the statement of Theorem. O

Symmetry and positive definiteness of the matrix A" lead to two useful
conclusions. First, the system (1.13) has unique solution u” for any right
part F', which follows from inadmissibility of zero eigenvalue of the matrix
AM. Second, for approximate solution of the system (1.13) an application of
a number of various direct and iterative methods [4] becomes possible.

Now, let show that the system (1.14) satisfies comparison theorems
despite that it is not M-matrix. For this purpose introduce a denotation
G" < 0 for the vector G" with components G%, j = 1,..., (n + 1), which
signifies component-wise comparison.

Theorem 33. Let the condition (1.4) be satisfied and step h be small

enough:
h < 2/l - (2.8)

Then for the system (1.14) from G* > 0 the inequality V* > 0 follows.

Proof. In order to use standard results on M-matrices it is necessary that
diagonal elements would be positive and off-diagonal ones do nonnegative.
This condition is satisfied for equations in the nodes w1, wip and woq,
but not for equations in the nodes wgp (see Fig. 2). Therefore slightly
transform the system (1.14) or, what is the same, the system (1.10) —
(1.12) so that to get rid of positive off-diagonal elements in the nodes wyy.
For that, to each equation corresponding to (z,y) € wpo add four equations
corresponding to the nodes (z £ h,y £ h) € w1 with a weight a and four
equations corresponding to the nodes (x £ h,y) € wio, (z,y £ h) € w1 with
a weight b. As a result, in a node (z,y) € woo we obtain an equation with
the stencil
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gs g4 gs
+ +
gs gs g2 gs gs
+ + + +
ez g2 g1 g2 ez
gs gs g2 gs gs
+ + + +
gs g4 gs
+ +

Fig. 3: 21-point stencil of the equation
in a node (z,y) € woo after transformation.

shown in Fig. 3., where

3 4b
9=
1 4 2a
4 2b
1 b
ga 4h2 h27
a
95_—ﬁ

Let try to choose the weights a,b so that in the equation obtained after
transformation the diagonal element would be positive and off-diagonal el-
ements do nonnegative. This will be true if

[ 07 g2 < 07 g3 < 07 ga < 07 g5 < 0. (210)

This results in the problem to determinate the admissible state. Let for
a step h the condition (2.8) be satisfied. Then the problem (2.10) has a
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nonempty set of admissible values, from which we choose
a=1/20, b=1/4. (2.11)

Finally, the following coefficients of the stencil in Fig. 3 are obtained:

2 1 d
N=p BT TRty
3 d 1
%= "qop "o =0 5= o

It is easy to verify that under the condition (2.8) we arrive at the inequalities
(2.10). Thus, instead of (1.14) we obtain a system

h

B'vh=G"

(2.12)

. . —h . ..
with M-matrix B and the same solution V". Due to positiveness of the

weights a, b the inequality @h > 0 is true. Therefore on the basis of the
properties of M-matrices [3]

vh>0. O

Prove an a priori estimate useful for further reasonings.

Theorem 34. Let for the problem

Lot =g" in wy \ woo,
Lhoh — LM = g™ in wpo, (2.13)

v =g on

the estimates (1.4) and (2.8) be fulfilled. Then
11

"oy < 35 19" oo, + 19" - (2.14)
Proof. Introduce a function
w=cy+ecx(l—x) in 02 (2.15)
with the constants
=19 s e = 15 19" (2.16)
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Note that

LMy = Lw = dw + 2¢4 > 2¢4  in wy, (2.17)
LMy = Lw = dw + 2¢4  in woo. (2.18)

Therefore for the nodes (z,y) € wy, \ woo we have

LMw > 2¢4 > ||gh|| > |gh| . (2.19)

o0,Wh

For the boundary nodes (x,y) € 7, it is also evident that

w2 o], 21" (2:20)

sVh

Consider grid operator in a node (z,y) € wpp, which is transformed
according to the rule pointed out in Theorem 2:

L"w — L*"w + a (L"w(z + h,y + h) + L"w(z — h,y + h)
+LMw(z + h,y — h) + L"w(z — h,y — 1)) + b (L w(z,y + h)
-f—Lh'LU(:B,y - h) + Lh'LU(:L“ + hay) + Lh’w(aj - hay))

> 8acy + 8bey = 1—5204 > % 9" (2.21)

o0,Wh

> |gh+a(gh(:c+h,y+h)+gh(:z:—h,y+h)
+9"(x+ h,y —h) +g"(x — h,y — h)) +b(g"(z,y+h)
+g" (@, y —h) + g"(x + h,y) + ¢"(x — h,y))|.

Introduce vectors V* and W with the components

+1 n
vh={ol}! Wh = {w; i1t

4,j=0" 4,§=0"

which are ordered as in the system (1.14). Then from the inequalities (2.19)
— (2.21) it follows that

B'Wh>B"Vh, ie. B (Wh-V") >o.
From the properties of M-matrices it follows that
Wh—vh>0 ie w>0v" in @,

Similarly, from (2.19) — (2.21) it follows that
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Therefore
[v*| <w in @ (2.22)

In the left-hand side take maximum over W, and in the right-hand side do
over 2. Finally we obtain

"], < s+ ea/,

that is equivalent to (2.14). O

3 Convergence of the nonuniform difference scheme

Theorem 35. Let u,u” be solutions of the problems (1.1)~(1.2) and (1.10)—

(1.12), respectively, and the conditions (1.3) — (1.5) be satisfied. Then
||U, — Uh||oo7gh < C5h4. (31)

Proof. We will establish a finer structure of the error. Let prove that the

solution u” can be represented as
u = u + htph in wi, (3.2)
Uh =u-+ w01h4 + h4ph in wo1 U wlo, (33)
u = u+ weoh* + hAp" in  Woo, (3.4)
where the functions
1 1 v Otu
Wo1r = — oM, Woo = — (3.5)

18 " 1T g T gy
does not depend on A, and the remainder term p” is limited in the following
way:

" < cq. (3.6)

00,Wp —

12

In the expression (1.7), apply Taylor series expansion from the points (z +
h,y) and (z,y £ h) into the node (x,y). Further we omit the argument (z,y)
if this does not arouse misunderstanding:

0%u  h? 0%

_ 4 h

U5 = gp2 T g g T e
(3.7)

O*u B0,

Ui o T o gyt T
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where
1 [|0%
i) < o= |5 in - w,
=360 || 028 || o
(3.8)
|l | < L |0 in w
> 520 a6 h-
=360 [ 0y° || o i

With consideration of the expansions (3.2), (3.4) and (3.7) for odd nodes
w11 we obtain

Lhuh = LMu+ hA*L"p" — h% (woy (z + h,y) 39)
3.9
+w01(:v — h,y) + wm(:z:,y + h) + w01(:r;,y — h))

For the function wy; use Taylor series expansion from the points (z £ h, y)
and (z,y £ h) into the node (z,y):

wo1 (z + h,y) + wor (x — h,y) + wor(x,y + h) + wor(z,y — h) (3.10)
= dwoy + 217l '

where with account of (3.5) we have

820.)01 820.)01

QPwn | Qwo ) _ 1
0x? oy?

= —lu) V5. (3.11)
o 124

00,82

2 |,Ugl| < H

Taking into consideration the expansions (3.7), (3.10) into (3.9), we obtain
the equality
h2
LMy = (= Au + du) — Tla
—h*(ult, + ) + BALP P — 4hPwor — 21 prgs.

On the basis of equations (1.1), (1.10) and definitions (3.5) a cancellation
of terms of the orders 1 and h? is performed. Divide the remaining terms
by h*. As a result we arrive at the inequality

Lt =, +uly, + 2y i o (3.12)

Substitution of the expansions (3.3), (3.4), (3.10) into the grid operator
(1.11) for even nodes wgg gives the following:

Lhuh _ L2huh — Lhu _ L2hu + h4(thh _ L2hph)

A (3.13)
+h* (4wgo/h? + dwgg) — 4h*wor — 2h* pgy -
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In odd nodes wqo expressions similar to (3.7) are valid, but with doubled
step, which gives

h2
LMy = (=Au + du) — 3H h (i, + p5,), (3.14)
where
9% .
|iu’2ac| = 45 Hax(; 77 | 2y| >~ 45 6—1/6 m woo- (315)

Taking account of (3.14) in (3.13), we obtain the equality
Lhu" — L2y = pA (LI p" — L p") 4+ 4h*woo + dwooh® — 4h*woy — 20l

h2 h2 h4 h h4 h

Again, on the basis of equations (1.1), (1.10) and definitions (3.5) the cancel-
lation of terms of the orders 1 and h? takes place. In this case the cancellation
of the terms of order h2 is performed due to proper choice of multiplier at
L?"u". The remaining terms after division by h* give the equality

ToM — h4:u1.t - h4iu‘1y

Lhph — LM ph = pll, + uty — p, — iy, — dwoo  in wo. (3.16)

Substitution of the expansions (3.2), (3.3), (3.4) into the grid operator
(1.10) for nodes with alternating evenness of indices wig gives the relation

Lhuh = LMy 4+ AL p"
(3.17)

4w woo(x + h,y)  woo(x — h,y)
4 01 00 ) )
+h (( h2 —+ d'LU01> — h2 — h2 .

For the function wgg apply Taylor series expansion from the points (z £ h, y)
into the node (z,y) similarly to (3.10), (3.11). This yields the equality:

woo(x + h,y) + woo(z — h,y) = 2weo(x,y) + hz,ugo(fﬂ,y): (3.18)

where with account of (3.5) we have

1
It < <llull’? . (3.19)

Taking into account the expansions (3.7), (3.18) into (3.17), we obtain the
equality

2
LMl = (= Au+ du) — %H + R " + 4hPwor

+h*dwoy — 2h*woo — b, — h*pt, — b pgy.
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Again, on the basis of equations (1.1), (1.10) and definitions (3.5) cancella-
tion of terms of the orders 1 and h? takes place. Finally, after division by
h* we arrive at the equality

L'p" = —dwoy + pf, + pt, + po in - wio. (3.20)

Similarly for the nodes of another group of alternating evenness wg; we
obtain the equality

Lrph = —dwor + pf, + iy + ugy  in wor (3:21)

with the same estimate (3.19) for the remainder term pf;.
Taking into consideration (3.3), (3.4), (3.12), (3.16), (3.20), and (3.21),
for p" we obtain the problem

L'p" =¢" in wy \ woo,

Lhph — L2hph = €7 in - wpo, (3.22)
Pl = —wor in v, N (@o1 Umio),
p" = —weo in yn NWoo

with the right-hand side
h=pl, +ply + 20 inowi,
¢ = —dwor + piy + pty + ugy I wor Uwio,
& =pt, + ply, — ph, — pb, —dweo  in woo.

Owing to the estimates (3.8), (3.11), (3.15), (3.19) and boundedness of
functions d and p from (3.5) the following inequality is valid

€ <er in wp. (3.23)

Use the a priori estimate from Theorem 3. Then with account of (3.5) we

have
11

1
h”oo,wh < 48 ||5h||oo7wh + E||ll||oom,- (3.24)

e
Taking into account the estimate (3.23), we obtain (3.6) with the constant
cg = 117 /48 + ||plloo,, /12.

From the representation (3.2) — (3.4) it follows that

="z <5 (16 e, + ol + ool )

co,Wwn —

With account of (3.24) this proves the estimate (3.1). O
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4 Numerical examples

By analogy with the work [1] apply the constructed method to two problems
of the form (1.1)—(1.2) with smooth and with oscillation solutions. The first

problem is
y(1 —y) cos ( )
( ) =) eos ()

1= 1) cos(gy)

—Au = 2(:05( )

+(1—x)s

+-xz(1 — z) cos W;) 72y(1 — y) cos (%)
+2z(1 — x) cos (%) cos (%y) (4.1)
+z(l —x)cos(— ) (1 —y)sin (%y) ™

Its exact solution is
u(z,y) = z(1 — x) cos (F—;) y(1 —y) cos (7T_2y) .
The second problem is

—Au= —32¢(1 —2)y(l —y) +512s2(1 —2)y(1 — y)
+32cxy(l —y) + 2sy(1 — y) — 32cx(1 — z)(1 — y)
+32cx(l — z)y +2sx(1 —x) in {2, (4.2)
u= 0 in I

where the denotations s = sin(16z + 16y) and ¢ = cos(16z + 16y) are used.
Its exact solution is

u(z,y) = sin(16z + 16y)z(1 — z)y(1 — y).
In Tables 1,2 the errors 6s = ||u — u"|| 7, and

1/2
61 = llu—uM2m, = (Z (u(2) - Uh(z))2>

ZEWR



A two-dimensional nonuniform difference scheme 211

of solutions of both the problems by standard method (1.7) of the second
order of accuracy and by the proposed method (1.10)—(1.12) of the fourth
order are presented.

Table 1: Error of approximate solutions
for the problem with smooth solution.

Problem I
N method (1.7) method (1.10) — (1.12)
2, wp, 00, W 2, W, 00, W
4 1.1810 — 03 2.2479 — 03 6.7310 — 04 2.20170 — 03
8 2.92,p — 04 6.11y9 — 04 4.3010 — 05 1.64;9 — 04
16 7.2710 — 05 1.5219 — 04 2.6819 — 06 1.0219 — 05
32 1.8219 — 05 3.8219 — 05 1.6819 — 07 6.4619 — 07
64 | 4.54;0— 06 9.5419 — 06 1.06,0 — 08 4.0819 — 08
Table 2: Error of approximate solutions
for the problem with oscillating solution.
Problem IT
N method (1.7) method (1.10) — (1.12)
2, wp, 00, W 2, W, 00, W
4 1.3810 — 01 2.7010 — 01 1.5310 — 01 3.64,0 — 01
8 1.1819 — 02 2.6710 — 02 4.7010 — 02 1410 — 01
16 2.4219 — 03 5.7619 — 03 2.5710 — 03 1.0419 — 02
32 5.7810 — 04 1.3910 — 03 14219 — 04 6.0019 — 04
64 14319 — 04 3.5219 — 04 8.4519 — 06 3.6119 — 05

These data are represented on graphs (in logarithmic scale over both
axes). In figures 4 and 5 the errors d; and Jy of the method (1.7) are de-
noted by numbers 1, 2; The errors of the method (1.10) — (1.12) are de-
noted by numbers 3, 4; numbers 5 and 6 denote the lines with inclinations
tg(p) = 2 and tg(p) = 4, characterizing the dependences § = h? and § = h*,
respectively.
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Fig. 4: Error of approximate solutions for the first problem.
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Fig. 5: Error of approximate solutions for the second problem.
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Except that, in Fig. 6 a pointwise graph of the error &, = u — u”" of the
proposed method (1.10)—(1.12) on a grid @y, with the step h = 1/32 for the
first problem is given.

x10~7
2.65

' "' "“ 'w., :
e

0.00 T

¥:
“_'34':

4‘;.:.9-‘.-;-.

///»

« m\ \ \\f S
I iy
-3.23 "\' r'\“ ‘\\ ’l ""”
-6.46 \\
\16\ . o - ///f?,/Z
- 16
3270

Fig. 6: Error 63 of the method (1.10)—(1.12) under n = 32. The first problem.

References

1. Bykova E.G., Shaidurov V.V.: A Nonuniform Difference Scheme of Higher
Order of Accuracy. One-dimensional Illustrative Ezample. Preprint Nel7 of
the Computing Center of SB RAS, Krasnoyarsk, 1996 (In Russian).

2. Riide U.: Extrapolation and Related Techniques for Solving Elliptic Equations.
Preprint NeI-9135, Miinchen Technical University, 1991.

3. Samarsky A.A.: Theory of Difference Schemes. Moscow, Nauka, 1977 (In
Russian).

4. Samarsky A.A., Nikolaev E.S.. Methods of Solution of Grid Equations.
Moscow, Nauka, 1978 (In Russian).



