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A nonuniform difference scheme with fourth order
of accuracy in a domain with smooth boundary

Bykova E.G., Shaidurov V.V.

Introduction

The present paper continues a series of works devoted to construction and
justification nonuniform difference schemes of higher degrees of accuracy.
Two-dimensional boundary-value problem for elliptic type equation in a
domain with smooth curvilinear boundary is considered. The main idea of
construction of such scheme is similar to that in the papers [1], [11], where it
is stated for the same equation in a rectangle. The transition to curvilinear
boundary required either to solve the question on special approximation of
boundary values or to re-construct the grid equations on non-standard sten-
cils near the boundary. Both approaches were used as applied to Richard-
son extrapolation in [2], [3] and [4], [5], [6], respectively. The first, although
leads to required result, gives extensive stencils; the second, being more
complicated in theoretical respect, gives more compact stencils of difference
equations near the boundary, so it appeared to be more preferable.

As it is in one-dimensional case, the difference scheme inside the do-
main is similar in structure to the equations of the method of extrapolated
equations by U. Riide [7] for finite elements. But near the boundary the
equations appear to be different. The justification of accuracy here is also
different from [7] and based on the maximum principle for a system of linear
algebraic equations equivalent to the difference scheme.

Let recall that the term nonuniform scheme was introduced in [8] and
used in [1] due to two different rules of construction of grid equations in
neighbouring nodes as distinct from uniform schemes [9], when the rule of
construction is the same for all nodes of the grid, at least inside the domain.
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1 Boundary-value problem

Let {2 be a limited domain in R? with smooth boundary I (i.e. of the class
C1). Consider a boundary-value problem

—Au+du=f in (2 (1.1)
u=g on I (1.2)

with continuous on 2 functions d, f and continuous on I" function g, and
d>0 on 2. (1.3)

These conditions ensure unique solvability of the problem. Suppose that the
solution is smooth enough:
u € C°(0). (1.4)

2 Construction of the difference grid and classification
of its nodes

Likewise in [6], suppose that the domain {2 is located within the square
{(z,y): 0<z <1, 0<y<1}. Cover it with a square grid with the step
h = 1/N, formed by the lines z; = ih and y; = jh, where i, =0,1,...,N
and N is integer. Let call nodes the points of intersection of these lines. A
node z;; is called inner, if z;; € (2. Denote the set of all inner nodes by wj,.

Each line of the grid z; or y; which intersects (2 also intersects the
boundary I'. Due to smoothness of the boundary the intersection with the
domain consists of certain number of intervals. Let call the end of these
intervals boundary nodes in direction x (or y), if the line being considered is
parallel to the coordinate axis Oz (respectively Oy). The set of all boundary
nodes in direction = denote by 74 ., and the set of all boundary nodes in
direction y denote by 7 ,. Also denote

Yh = VhaeUYny and Wh = wp Us.
For convenience, let divide the set wy into four subsets

woo = {zij : 2ij € wp, ©is even, jis even};
wo1 = {zij : #ij € wy, ©is even, jis odd};
wio = {2ij : 2ij € wp, ©is odd, jis even};

w11 = {ZZJ i € Wh, 7 is Odd7 ]IS Odd}
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For each inner node z;; = (x;,y;) introduce two definitions of the dis-
tance to the boundary I" which is parallel to two coordinate axes:

P T, Y5) = min |x; — T ,
1( ’ yj) ($yyj)er| ‘ |
P2\Ti,Y5) = min P —Uy|.
2( z;y]) (zi,y)e |y] y|

With the help of these definitions introduce a classification of the inner
nodes wy,. Geometric illustration of this classification is given at the end of
the paper for a concrete numerical example. Denote by 7117 , the set of inner
irregular nodes of the first type, for which only one of the distances p; or po
is less than h, and the another is greater than or equal to 2h:

N =1{zij : zij € wn, (p1(zi5) < h) & (pa2(zi5) > 2h)
or (p1(zij) > 2h) & (p2(zi5) < h)}.

By 'yih let denote the set of inner irregular nodes of the second type, for
which both the distances p; and p» are less than h:

YVin = {2 zij € wn, (p1(zij) < h) & (p2(2i5) < h)}.

Respectively, by 7137 5, let denote the set of inner irregular nodes of the third
type, for which at least one adjacent node z; j+1, zi+1,; belongs to 7127h:

3 . 2 2
Vi = {%ij  2ij € Why Ziv1,j € Vi p OF 2i1,j € Vip
2 2 *
Or 2ij+1 € Vi, OF Zij—1 € 717h}. )

By yff‘,f denote the set of external irregular nodes z;;, for which at least one
adjacent node 211 j, 2 j+1 belongs to v{ , Un}

out __

. e} 1 3 1 3
Yih =z 125 & 82, zig1; €V Ui, OF 2ic1j € V1, UM g

1 3 1 3
or Zij+1 € Y1, U, OF Zij—1 € 1,5 Ui 1 }-

Now, let classify the nodes from wgo near the boundary, which have not
come into v{ ,, 77, or 77, Denote by ¥2,5 the set of multiple nodes near
the boundary, for which at least one of the distances p; or ps is less than
3h,ie.,

Yo = {2ij : 2ij € woo \ (V0 UVih Ui ),
(p1(zij) < 3h) or (p2(2ij) < 3h)}.
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By 73, denote a subset of nodes from 7, 5, for which at least one of the
distances p; or po is less than 2h:

Yo = {2ij : zij € Y2un, (p1(zij) < 2h) or (p2(2i5) < 2h)}.

By 73, denote a subset of nodes from s 5, for which both the distances p
and p- are greater than 2h:

Yon = {25t 2ij € Y, (pr(2i5) > 2h) & (pa(zi) > 2h)}.
And, finally, by 737 5 let denote a subset of nodes from 7 j, for which only
one of the distances p; or ps is greater than 2h, and the another is greater
than 3h:
3 _ 1 2
Yan = V2,n \ (V2,1 U2,0)-

For convenience of subsequent consideration, let divide 7?7 , into three sub-
sets:
1) 77}, consists of nodes whose both adjacent nodes belong to 77 ,;
2) 773, consists of nodes whose one adjacent node belongs to 77 ,, and the
other one belongs to 7{';
3) M =a \ (P UR)-

Make a classification of regular nodes. Let call a node regular of the first
kind, if it belongs to wy, \ woo and is not included in 7y ,, 77 1, 74 ; denote
the set of such nodes by

Wh1 = wn \ (woo U '711,h U 7127h U 7137h)'

Let call a node regular of the second kind, if it belongs to wgp, but is not
included in 73 p; denote the set of such nodes by

Why2 = woo \ (V2. UY1,5 UYE 0 UYL )-
The totality of regular nodes denote by wj = wj ; Uwj 5, and the nodes
Wi = wy, \ {w}; U 712,1;} let call irregular one.

For an arbitrary function v defined on a set D (finite or infinite) let
introduce the denotation

[[0]lco,p = sup|ov].
D

3 Interpolation formula

For interpolation of boundary values we will use the interpolation formulas
of two forms, selected in each case for ensuring stability (the stencils are
shown in Fig. 1).
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—4h —3h —2h —h 0 dh h
|

t

Fig. 1: Stencil of Lagrange interpolation formula; 0 < § < 1.

Let the function v(t) € C*[—3h, h]. The first of the formulas approxi-
mates the value v(0) through the values of the same function in the points
—h, —2h, —3h and dh (0 < § < 1):

v(0) & @1 (v(=h),v(=2h),v(=3h),v(dh)) (3.1)

= %v(—h) - 6?;62@(—2h) + v(=3h) + ¢17(8)v(Sh)
where ¢17(6) =6/((6 +1)(6 +2)(d + 3)).

Now, let supplement the definition of the function v to the right from dh
with a segment of Taylor series with respect to dh up to the fourth derivative
inclusive. Let keep the denotation v(t) for the supplement, and note that it
belongs to C*[—2h, h], and

0+3

||’U(4)||oo7[72h,h] = ||U(4)||oo7[—2h,5h]-

The second formula expresses v(h) through four values in the points 0, —h,
—2h, and dh:

v(h) ~ 2 (v(0),v(=h),v(=2h),v(5h)) (3.2)

=30y By L0k g eputn

where @27(8) =6/(5(0 + 1)(6 + 2)).
Let recall [10] that interpolation over four nodes gives result with fourth
order of accuracy in the following form:

max {[v(0) — @1/, [u(h) — pal} < A ([0 oo (31.5n) (3.3)
with the constant ¢ independent of h, v(t), and § € (0,1].

4 Construction of difference approximation

For difference approximation of the equation (1.1) introduce the following
operators:

L'(z,y) =(v(z — h,y) + v(x + h,y) + v(z,y —h) +v(z,y + h) —
v (z,y))/h* + d(z, y)v(z,y), (4.1)
L2hv(m, y) =(v(z — 2h,y) + v(z + 2h,y) + v(z,y — 2h) + v(z,y + 2h) —
dv(z,y))/(4h?) + d(z, y)v(z, y). (4.2)
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Start the construction of grid equations with the regular nodes. Let
zij € wp, ;. Then the difference approximation is performed as a standard
five-point equation

Lhuh(zij) = f(Zij), Zij € w;;l, (43)

on the stencil small cross (see Fig. 2.a)). But if z;; is a regular node of the
second kind, i.e., z;; € wy, 5, then the difference approximation is taken as
nine-point equation on the stencil large cross (see. Fig. 2.b)):

h, h 2h, h
L"u"(2ij) — L™"u"(2i5) = 0, zij € W}, 5. (4.4)
a) b | |
1 4n2
11 R
T h? h2
_L L1 1 L1 _L €
h?2 h? 4h2 h? h? 4h2
; 1 : ; : 3 : :
v pztdij v %)
L1 IR
h? h?
Tj
1L
4h?
T

Fig. 2: Stencils a) small cross and b) large cross with the values of coeflicients
of the operators L" and L" — L?", respectively.

Consider the construction of grid equation in irregular nodes. Let z;; €
7117h and one node of the stencil small cross, for instance, z; j11 does not
belong to (2 (see Fig. 3.a)). Denote by s;; the point of intersection of the
boundary I" with the segment [2;;, 2; j+1]. At the beginning assume that the
solution u(z, y) is determined in the point z; j;1 and write down an ordinary
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five-point equation (4.3). Then construct interpolation formula (3.2) for the
function w(z,y) with respect to y coordinate, directing the axis 0t from z;;
into z; j+1 and assuming ¢ be equal to the distance §, from z;; to sy, i.e.,
dy = p2(2i;). As a result, we obtain five-point grid equation with the first
asymmetric T-shaped stencil :

i . M ne,oy_ (L 3(1—4dy) hi,. .

(h2 +d(zl]) + (Syh2 ) u (ZZJ) h2 + (1 4 6y)h2 u (Z%]*l)
1-9 1 1

+(2 + (5y;;h2 uh(ZiJ?Z) - ﬁuh(ZiJrl,j) - ﬁuh(zi,u) (4_5)

= J(i) + 7702109051

where the boundary condition (2) is used in the form wu(s;;) = g(sq;).

a) b)

r
T — I

Sij

Sij
AV/4 AV/4 \Y AV/4
N zij . N zij
Zi—1j Zit+1j Zi—1j Zit1j

Xz X 21

X 22 X 22

1 . out 2 . 33
Zij € V1,05 Zij+1 € Vih Zij+1 € Vi,n5 Zij € Vh

Fig. 3: The first (a) and the second (b) T-shaped asymmetric stencils.
Cross sign marks the nodes of corresponding stencils.

Remark. Construction of grid equations is not performed in the nodes
zij € 7127h. An attempt of double application of the above method in these
nodes (elimination of external nodes by means of mean value formula (3.2))
gives grid equations which do not provide sufficient conditions for compari-
son theorems and the proof of stability. Therefore the authors refused from
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use of grid equations in nodes of the set 712’ n- Accordingly, the resulting sys-
tem of equations should not contain variables u”(z;;) with arguments from
b

Taking into account the above remark, it is necessary to exclude the
values in the nodes 7127,1 from the other grid equations. Three variants are
possible when one or two nodes of the stencil small cross belong to 712’,“
and there are two variants when one or two nodes of the stencil large cross
belong to 77 .

Consider these variants.
1) Suppose that z; € 777 and one node of the stencil small cross, for
instance, z; j+1 belongs to 'yf’h (see Fig. 3.b)). Denote by s;; the point of
intersection of the boundary I" with the ray [z;;,2; +1). At the beginning
assume that the solution u(z,y) is determined in the point z; j4+1 and write
down an ordinary five-point equation (4.3). Then construct interpolation
formula (3.1) for the function u(z,y) with respect to y coordinate, directing
the axis 0¢ from z; j41 into s;; and assuming § be equal to the distance d,
from z; j+1 to si5, i.€., 0y = p2(zij+1). As a result, we obtain five-point grid
equation with the second asymmetric T-shaped stencil:

4 30, 1 30
5 +d(zij) = 55 | ut ) — | 55— s ) W (F1)
h (6, + Dh R (2+0,)h
1) 1 1
Pz ) — (i) — " (i) (4.6)
B3+ 6,)h h I

= Ji) + 715 (0,)(s1):

2) Let z;; € 77}, and two nodes of the stencil small cross, for instance,
zijy1 and zjy1; belong to 77, (see Fig. 4.). Both the values ul(zi j+1)
and u”(z;41 ;) are eliminated by means of formula (3.1). As a result, we
obtain five-point grid equation with the first asymmetric I'-shaped stencil
(see Fig. 4.):

4 30, 34
(ﬁ HE) S G TG, +1Vi)h2> ¥

Y S PPN (S . T

(h2 (2+5x)h2> u (21717]) (h2 (2+6y)h2> u (zl,jfl)
Oy 5

_muh(szZ]’) - Wuh(zi7]~,2)

(4.7)

= f(aig) + 017 02)0(s15.) + 3017651,

where 0, = p1(2i41,5) and 6y = p2(2j41).
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\ Sijy
Zij+1
#ij Sija

AN/ AN/4 | |
/N /N I I
2i—2j Zi—1j Zit1j

Zii_

=1 R r

9
-2 K

Fig. 4: The first I'-shaped asymmetric stencil.

Cross sign marks the nodes of the stencil. z; j+1 € ’yih; Zi+1,j € 'yih; zij € 'yf’}h.

3) Let z;5 € 71372,“ one node of the stencil small cross, for instance, z; j+1
belong to 712,h and the second, for instance, z;41,; belong to 710’;5 (see Fig. 5.).
Both the values u"(z; j41) and u"(z;41 ;) are eliminated by means of cor-
responding formula (3.1) or (3.2). As a result, we obtain five-point grid
equation with the second asymmetric I'-shaped stencil (see Fig. 5.):

4 U3 -4d.) 35, e

<h2 +d(zl]) + 5wh2 (53/ + 1)h2> u (Zl])

0 o, (L 300
Br ot P2 (h? Pl ) ) (48)

1 36 1-94, '

_ <ﬁ — m) Uh(Zi,jfl) + muh(zz',zﬂ')

= f(aig) + 021 02)0(s15.) + 3017651,

where (Sz = pP1 (Zij) and (Sy = p2(zi,j+1)-
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Sijy
Zij4+1 —+
Sija
Zij
N/ |
/N f
2i—2j Zi—1j Zit1j

Sim K

Him XK

Fig. 5: The second I'-shaped asymmetric stencil.

Cross sign marks the nodes of the stencil. zi j 11 € Vi 4 zit1.j € V455 2ij € Vi

Consider the equations in irregular nodes z;; belonging to <2 5. There
are two variants when one or two points of the stencil large cross belong to
Vi p- Let zij € 93, and z;_2; € 77, (see Fig. 6.). Denote by s;; the point
of intersection of the boundary I" and the ray (z;_» j, 2;;]. At the beginning
assume that the solution u(z,y) is determined in the point z;_» ; and write
down five-point equation:

1 1 1
(ﬁ + d(zij)) u"(2i) — Wuh(zz'—zj) - m“h(zwlj)
" L (4.9)
) = g ) = Slow).

Then construct interpolation formula (3.1) for the function u(x,y) with
respect to y coordinate, directing the axis 0t from z;; into z;_» ; and assum-
ing 0 be equal to the distance §, from z;_» ; to s;;. As a result, we obtain
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six-point grid equation with the first asymmetric X-shaped stencil:

1 36, . 30, .
(h2 6, e T d(z”)> w(z4) (6, + 1)an2 " (Zi-1,9)
1) 1 1
—muh(zwu) - 4—h2uh(2i+27j) - 4—h2uh(zi7j+2) (4.10)
1 1
—muh(zi,j—ﬂ = [(zig) + 5017 (0y)9(si5)-
Xz
-+ Zij+1
Sl‘j
X X
Zi—2j Zi—1j Zij  Rit+lj Zi+2j
- Rij—1
(9
r K Zij—2

Fig. 6: The first X-shaped asymmetric stencil.

Cross-sign marks the nodes of the stencil. z;; € 'yg’,h; Zi—2,j € 'y%,h.

Consider the second variant. Let z;; € 7§7h and z;_»; € 7127,“ Zij4+2 €
7ih (see Fig. 7.). Denote by s;;, the point of intersection of the boundary
I' and the ray (z; 2,j,2i;], and by s;;, denote the point of intersection of
the boundary I' and the ray (z; 12, 2i;]. At the beginning assume that the
solution u(x,y) is determined in the points z;_s j, 2 j4+2 and write down
five-point equation (4.9). Then by means of formula (3.1) eliminate the
points belonging to '712,h- As a result, we obtain seven-point equation with
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the second asymmetric X-shaped stencil:

1 30, 34, .,
<ﬁ i (0y + 2)4h2+ (0y +2)4h? + d(z”)> u”(zi5)
30 h 30, h
_mu (Gig) = Gipyape® Fia)
) 5,
_mu%zi’j”) a m“h(zm,j) (4.11)
L o 1,
~aet Fie2) = g (zigen)

1 1
= f(zij) + 4—h2</91f(5z)9(8ijm) + 4—hz</91f(5y)9(8ijy)

where 6, = p1(2i—2,5), 6y = p2(zi,j+2).

In the rest of the nodes z;; € 73 ;, the equations are constructed according
to the following principle. Let z;; € 7217 n» consequently, one adjacent node
belongs to '711,h- Then in the point z;; an equation similar to (4.6) can be
constructed with elimination of the point belonging to yllyh.

Thus, in the result of these constructions a system of linear algebraic

equations is obtained, which unites the equalities (4.3) — (4.8), (4.10), (4.11)
taken in corresponding nodes. Write down this system in operator form

Ayl = fh on wy \'712,h (4.12)

with sought for grid function u”(z;;) and known right hand side f"(z;;)
with the argument z;; € ws \ 77,
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Sijy T I

/

—+ Zij+2
>< Zij+1
Sijo /
| / | I N\ N
T/ T N N /N
/ Zi—2j Zi—1j Zij il Zi+2j

5< Zij—1

Ko

Fig. 7: The second X-shaped asymmetric stencil.

Cross sign marks the nodes of the stencil. z;; € 'yg,h; Zi—2,j € 'y%,h; Zij4+2 € 'yih.

5 Stability, solvability and convergence of the grid
problem

Transform the system (4.12) so that its matrix would be M — matrix. At first,
enumerate the nodes of the set wy, \ 77 ;, from 1 to M and give corresponding
numbers to the equations in the nodes z;; € wp \ 7%,h and the variables
u”(z;;). In order to utilize the standard results concerning M — matrices, it
is necessary that diagonal elements would be positive and off-diagonal ones
would be non-negative, and the sum of modules of off-diagonal elements
would not exceed a diagonal element. For equations in the nodes wy ,, 7?,115:
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¥33,, Y2,n these conditions are satisfied, but that is not true for equations in
the nodes 7117,“ 713?h, W o-

95 94 g5
+ + +
gs gs g2 g3 gs
+ + + + +
ga g2 g1 g2 g4
g5 g3 g2 g3 g5
+ + + + +
gs g4 gs
+ T+ +
2 1 d
glzﬁa 92:_10h2 +Z;
= 3 + d =0
g3 = 10h2 207 g4 =V,
_ 1
95 = To0n2

Fig. 8: 21-point stencil of the equation in node z;; € wj, »

after the transformation.

In order to eliminate positive off-diagonal elements, let add to each equa-
tion (4.4) in z;; € w}, , four equations in four regular nodes ;41,541 € wy, 4,
with weight a = 1/20, and four equations in the nodes zit1; € wj,,
zijx1 € w1, with weight b = 1/4 (for details see [11]). As a result, in
the node z;; € wy, we obtain an equation with the stencil shown in
Fig. 8 (compare to Fig. 2.b). Then, in addition, require that the following
inequality would be true:

h? <2/ (3lldllss,w) - (5.1)
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It is easy to verify that under this condition we come to the following in-
equalities for coefficients of the new grid equation with extended stencil:

g1 207 gZS(); g3§07 g4:07 g5S07
191(2i5)| > |92(zi11,5) + 92(2i-1,5) + 92(2ij+1) + 92(2i,j-1)
+93(Ziv1,j41) + g3(zic1,j41) + 93(2iv1,5-1) + g3(2i—1,j-1) + 8gs|,

which confirm both right signs of coefficients of the stencil and diagonal
prevalence.

— —
92 g1 g2
+94 193 +g4
-+ 95
4 2(—62 + 26, +3)
=5 +d+ z :
= 3, (2 + 0,)h2
1
g2 = _ﬁ’
_ 1 585,42 (1-5,d
BETE T T +0,)2+06,)h | 2+4,
— 1_511
g4 = (2+(Sy)h2’
gs = 0.

Fig. 9: 7-point stencil of the equation in the node z;; € ’yll,h
after the transformation.

Now, let zij € 77, and 2511 € 7%, and 21 € W ,. Add to the
equation (4.5) in the point z;; one more equation (4.3) in the regular node
zij—1 € wp 1, with weight a = (1 —d,)/(2 + J,). As a result, in the point
zij € 7117 ;, We obtain an equation with seven-point stencil, as shown in Fig. 9
(compare to Fig. 3.a). It is easy to verify that under the condition (5.1) and
taking into account that J, € (0, 1] we come to the inequalities

g1 207 gZS(); g3§07 g4S07 g5S07
191(2i5)| > 1292 + g5(2ij-1) + 294 + g5|.
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gs
_|_
Je 94 g1
| |
| |
gs g2
_|_ €1
g3
_ A AR 26, 43) 3,
=52 0o (2+0.)h2 (8, + L)A2’
(L 3%y
P2=T\n2 T @ron2)’
_ dy
P =T B s,
1 52 — 36, +2 (1—6,)d
g1=—75 — 5+ :
B2 (1+6,)(2+ 04)h 2+ 0,
1-6, 0

5= Erae T

Fig. 10: 7-point stencil of the equation in the node z;; € 777,
after the transformation.

Let z;; € vizh, Ziy1,j € 7107';;', and z;—1,; € wp, ;. Add to the equation (4.8)
in the point z;; one more equation (4.3) in the regular node z;_; ; € WZ,1
with weight a = (1 = d,)/(2 + ;). As a result, in the point z;; € 77, we
obtain an equation with seven-point stencil shown in Fig. 10 (compare to
Fig. 5). Under the condition (5.1) and taking into account that 6, € (0,1]
and ¢, € (0,1] we obtain the inequalities

91207 92S07 g3S07 g4S07 95§07 QGSO;
l91(zi5)| > |92 + g3 + 94(zi-1,5) + 295 + gs.
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Thus, we obtain a system consisting of the equations corresponding to the
points belonging to wj, ;, 77}, 775 and 725, and transformed equations
corresponding to the points belonging to wy, ,, 77, and 77%,. With the regard
for the signs of diagonal and off-diagonal elements, diagonal prevalence and
indecomposability [9], the matrix of the transformed system is M-matrix.
The obtained equivalent grid problem can be written down as

B =gh on wy, \7127h (5.2)
with the same unknown grid function «”* but with transformed right-hand

side g".

Theorem 36. Let the condition (1.3) be satisfied and the step h be small
enough:

B < 2/(5ldll., ). (5.3)

Then for arbitrary right-hand side f" the solution of the problem (4.12)
satisfies the estimate

11
lu" oo A2, < 4—8||fh||oo,w;; S PRI [ (5.4)

where S"(z;;) is the sum of coefficients of the grid equation (4.12) in the
node z;; and is strictly positive on wi’.

Proof. Introduce a function
1, .,
wi(z,y) = az(l —z), o= Sl low- (5.5)
Note that derivatives of the order 3 and higher of this function are equal to
zero. Therefore the exact approximation of the difference operators L", L*"
and interpolation formulas is attained for this function. From this, under

the condition (1.3) we have

L'"wy = Lwy = dwi +2¢1 > 2¢1 >0 on  wy, (5.6)
L*Mw, = Lw, = dwy +2¢; > 2¢; >0 on  wpp. (5.7)

Taking into account (5.6), in regular nodes of the first kind we obtain

11
B"w, = Lw, > F||f||m7w; > A" = B"u"  on Wh 1- (5.8)
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Similar expression for regular nodes of the second kind can be obtained by
means of the rule of transformation of the operator A" into B" (detailed
computations see in [11]):
12 11

Blwy > <2 2 —lflloowy > B'u" on wp,. (5.9)
In irregular nodes, from the analysis of the rules of transformation of A"
into B" (i.e., possible addition of a regular equation with weight < 1/2)
with account of (5.6) or (5.7) it follows that

BMw, > Lw; > 2¢;  on wff. (5.10)
Introduce a constant function
wy(z,y) =cz where ¢y = ||fh/Sh||m7er. (5.11)

After the substitution of it into the operator B”, two possible situations
take place: either coincidence or lack of coincidence of the equations for z;;
in (5.2) and (4.12). In the first case (when 2;; € wj, , U, U275, Uran) we
obtain

Bh'LUQ(Zij) = AhU)2 (Zl'j) = CQSh(Zl‘j) Z 0, (512)

in irregular nodes being diagonal prevalence and the value of S"(z;;) being
strictly positive. In the second case the equation in (5.2) is obtained from
(4.12) by addition of regular equations with positive weights. Therefore (for
zij € Wh o U, UnPy) we have

Bh'LUQ(Zij) Z AhU)2 (Zl'j) = CQSh(Zl‘j) Z 0, (513)

the value of diagonal prevalence being not less in irregular nodes and S”(z;;)
being strictly positive again. So, combining the inequalities (5.12) and (5.13)
we obtain

B"wy(2:5) >0 on  wf, (5.14)
Bhwg(zij) Z CQSh(Zij) Z fh(Zij) on OJ;LT. (515)

Summing up the inequalities (5.8) and (5.9) with (5.19), we come to the
following expression in regular nodes

B"(wy; +wy) > B"u" on wj. (5.16)

In irregular nodes this expression is obtained by summation of (5.10) with
(5.15) and taking into account the rule of transformation of A" into B":

Bh(w1 +wsz) > 2¢1 + o > 2¢1 + APyl > B on wff.
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From two last inequalities on the basis of the comparison theorem [9] it
follows that

h 2
wy +wy > u" on Wy \ Vi

After the replacement of f* with —f" the above reasonings give the evalu-
ation

w1 +ws > —u" on wh\%z,h.

The two last evaluations can be combined into the inequality
|u| <w; +wy on  wy \7%7,,

After taking maximum in the right-hand side over [0, 1] x [0, 1] we come to
the evaluation (5.4). O

Theorem 1 conveys stability of the problem (4.12) with respect to the
boundary values and right-hand side, and, besides that, from it naturally
follows unique solvability, since corresponding to it uniform system admits
only zero solution.
Lemma 1. If the conditions (1.3) and (5.3) are satisfied, then there ezists a
constant c3 independent from h and domain (2, such that the value 03Sh(zij)
in irreqular node z;; € wi' majorizes the modules of all non-zero coefficients
of the grid equation (4.12) corresponding to this node.
Proof. Let consider in details only one variant, for instance, the equation
(4.5) in the node z;; € 1. Computation of Sh(z;;) with the account of
(1.3) and (3.2) gives the evaluation

1 6
h i) = d(zi; 0o r(8,) > . 1
) = dlzg) + 32020 2 5 e g e (517
For any 6, € (0,1] we have
1 1
h
$'(e5) 2 5 2 7 (5.18)
From this and (5.3) we obtain
2 2

Except that, from (5.18) follow the inequalities

3 _3(1-4,)
> >
=5 h2 = o,h2

3Sh (Zij)
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By summation of the three last inequalities (the first with the factor 4), we

obtain A 3(1—6,)
h —
5 S (ZU) > h2 (5th
Thus, the expression in the left-hand side majorizes the positive diagonal
coefficient. It is easy to verify that it majorizes the modules of the other
four coeflicients of the equation (4.5).

So, the statement of the lemma is proved for the nodes 711’ , With constant
37/5. Similarly to the reasonings in (5.17) — (5.20), the existence of such
constants for other kinds of irregular nodes can be proved. Denoting the
maximal of them by c¢3, we complete the proof of the Lemma. O
Corollary 1. Looking through the equations (4.5) — (4.8), (4.10) and (4.11)
one can make sure that each of them contains a coefficient with absolute
value not less than 1/h? (in (4.7), (4.8), (4.10) and (4.11) that is diagonal
coefficient). Therefore from Lemma 1 it follows that

1

S"(2i5) > iz for 2z € wil. (5.21)

37

+d(zi5) + (5.20)

Theorem 37. Let u,u” be the solutions of the problems (1.1) — (1.2) and
(4.12), respectively, and the conditions (1.3), (1.4), (5.3) be satisfied. Then

= e oz, < OB (522)
where constant C' is independent of h.

Proof. Let show that the solution 4" can be represented in the form:

ul = u + htph on  wi1 \ Vi (5.23)
u® = u+ htwoy + h*p"  on  (wo1 Uwio) \712’,“ (5.24)
u" = u+ htweo + hip"  on  wep \7‘127,“ (5.25)
(5.26)
where the functions
1 1 v Otu
Wo1 48H7 Woo 12,“7 M 8.1’4 + 6]/4 (5 7)

do not depend on h, and the remainder term p" is limited in the following
way':

||Ph||oo,wh\wih < ey. (5.28)
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The proof of the representations (5.23) — (5.27) is obtained by complication
of proof of the Theorem 4 from the work [11]. Indeed, on the basis of the
computations given there one can obtain equalities in regular nodes wy,

Alph = Lhph = ¢ on Wh1s (5.29)
Alph = Lhph — LPhph = ¢t on Wh 2 (5.30)

with a grid function
|€h| <es on wl. (5.31)

Let consider in details the situation in irregular nodes after the example
of the grid equation (4.5) in the node z;; € 7117h. Substitute the expansions
(5.23) — (5.25) into the expression L"u"(z;;) and for the function u perform
the expansion into Taylor series with respect to z;; with the remainder term
of the order h'. In the node z; j11 lying outside (2 the value of u"(2; j11) is
determined as (one-dimensional) Taylor series with respect to s;; up to the
derivative 0*u/dy* inclusive. Then for the function u interpolation formula
(3.2) with remainder term (3.3) and multiplied by 1/h? is used. As a result,
we obtain the equality

Alu(ziy) = f(zi5) + B2 ((245) (5.32)
with the evaluation of the remainder term
|¢(=i5)] < ce. (5.33)

Consider terms of the form h*wg; and h*wgp in the expansions (5.24), (5.25).
On the basis of (5.27) they are evaluated as

h*
4 —
< ol .
h mgx{|w00|,|wo1|} < 12”#”0079 (5.34)

On the basis of Lemma 1, under any possible arrangement of these terms
on the stencil of the equation (4.5) (see Fig. 3a) the result n(z;;)) of lin-
ear combination of these terms with corresponding coefficients of the grid
equation (4.5) can be evaluated as

h4
In(zij)| < 538" (215) 75 1lloc - (5.35)

Thus, after substitution of (5.23) — (5.25) into the expressions APu(z;;)
reduce a part of terms due to (4.12) and (5.32), divide the others terms by
h* and group together the terms with ((z;;) and n(z;;) into one remainder
term &":

AMp"(zij) = €215),  zij € Mo (5.36)
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Due to (5.33), (5.35), and Corollary 1 we have the evaluation
€7 (i) < h72I¢(zi) |+ B n(zij)| < esles +5/12 ||l 2)S" (i) (5.37)
Similar expressions are obtained in other kinds of irregular nodes. Finally,
Alph = ¢ on Wir (5.38)
with a grid function &" for which the following evaluation is valid:
" (zij)| < erS™(2i), 25 € Wy, (5.39)
where ¢7 = c3(ce + 7/12 [|p]l . 1)-
In the end we arrive at the system of equations (5.29), (5.30), and (5.38),

which uniquely determines the grid function p”. On the basis of Theorem 1
we obtain the evaluation

11
10" lso @2, < 7 1€ ooy + 1€ /8™ oo woir- (5.40)
1,h 48

From it, due to (5.31) and (5.39), (5.28) follows with constant
ca = 11/48 ¢5 + ¢.
The final affirmation of (5.22) follows from (5.23) — (5.25) with use of

(5.28) and (5.34). O

6 Numerical examples

As in [11], let apply the constructed method to two problems of the form
(1.1) — (1.2) with improved smoothness and with oscillating solution. Let the
domain {2 be bounded by a circumference I" with center in point (0.5,0.5)
and radius 0.49.
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The problem I has the form

=m0y (2)
+(1-2)sin (%) my(1 — y) cos (%)
i () -1 ()
+ :z:l—:r;co( ") wy(1 - y)cos ()
+2:r;1—xcos( )cos( ) D)
+m(1—mcos( SEEMENESE,

z(1l —z) cos( )ysm( ) in 12,
u=g on I

with a function g being equal on I" to the exact solution

™ Y
u(z,y) = z(1 — x) cos (7) y(1 —y) cos (?) .
The problem II has the form

—Au= —32¢,(1 —2)y(1 —y) +512s,2(1 — x)y(1 — y)
+32¢c,zy(1 —y) + 2s,y(1 —y) — 32¢c,x(1 —z)(1 —y) (1)
+32¢,2(1l — )y + 2s5,2(1 —z) in {2,
u=g¢g on I

where ¢, = cos(16x + 16y) and s, = sin(16x + 16y). The function g on I is
equal to the exact solution as well u(z,y) = sin(16z + 16y)z(1 — z)y(1 —y).
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In Fig. 11 a quarter of the domain (2 is shown for N = 44.

Q)

Fig. 11: Scheme of possible arrangement of kinds of nodes on the grid wy;

Here new symbols are introduced:

+ — zij €wp g + — 2 €wpoy 4 — 2 €14
W — 2 € 711,h§ 0—=%j¢€ 712,h§ ® % € 75,11?
O — 2 ENZUMNS A — 2 €% O — 2ij €V
& Zij €V,
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The data of the numerical experiment are presented in Table 1.
Table 1: Error of approximate solutions
of the problem with improved smoothness.

N |method of the fourth order|method of the second order
¥, ¥y ¥, v,
10 | 5.84;0— 04| 1.68,9p—04 | 4.3910 — 04 | 2.0419p — 04
14 |6.3210 — 05| 1.5010 — 05 | 1.8479 — 04 | 8.40,9 — 05
18 | 4.24,0— 05| 9.2219p— 06 | 1.0730 — 04 | 4.7919 — 05
20 | 1.72190 — 05| 6.0919 — 06 | 8.6419 — 05| 3.8619 — 05
28 | 4.32190— 06| 1.3110 — 06 | 4.3710— 05| 1.95:9 — 05
30 | 2.1819— 06| 4.79190 — 07 | 3.8019 — 05| 1.7019 — 05
32 | 4.311p—06| 9.11;0 — 07 | 3.3510 — 05| 1.49;9 — 05
36 | 1.5519— 06| 3.8510 —07 | 2.6410— 05| 1.18;9 — 05
40 | 1.0219— 06| 2.7710 — 07 | 2.1319 — 05| 9.48;9 — 06
56 | 2.5219 — 07| 5.2999 — 08 | 1.08;9 — 05 | 4.821¢9 — 06
60 | 2.8819— 07| 4.8710—08 | 9.17190— 06 | 4.0719 — 06
64 | 2.5910— 07| 4.2910 — 08 | 7.0910 — 06 | 3.1019 — 06
AU, 0,
108

1077
10°¢
107°
10~*

108

1072

10717

1

10610 14 18 22 26 30 34 38 42 46 50 54 58 62

Fig. 12: Error of approximate solutions of the problems I and II.

In Fig. 12 the results of numerical experiments are shown in logarithmic
scale over the Y —axis. The numbers 1, 4 and 7 mark mean square error

1/2
>

€T \"]

U1 = [Ju —u"|l, (u(z) - u"(2))

Wh \'}/12 h =
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for the problems I and II, solved by the proposed in the present paper
method, and for the problem I, solved by a standard method with the second
order of accuracy, respectively [2], [6]. The numbers 3, 6 and 9 mark uniform
errors

U, = ||U' - uh||oo75h\'yf‘h

for the problems I and II, solved by the method proposed in the present
paper, and for the problem I, solved by a standard method with the second
order of accuracy, respectively. The numbers 2, 5 and 8 mark diagrams of
the curves § = c1h*, § = coh* and § = h?, respectively.
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