Table of contents

The finite element method for convection-diffusion convection-dominated problems

Karepova E.D., Shaidurov V.V.

Introduction 13
1 One-dimensional convection-diffusion problem 19
1.1 The differential problem and its properties 19
1.1.1 Boundary layer 19
1.1.2 The asymptotic expansion of the solution 20
1.1.3 The estimates of the remainder term 21
1.1.4 The weak formulation. The Petrov-Galerkin method 24
1.2 The finite element method with a linear quadrature rule 26
1.2.1 Construction of the quadrature rule 27
1.2.2 Properties of the discrete problem 32
1.2.3 Convergence result 36
1.3 The finite element method with nonlinear quadrature rule 36
1.3.1 Construction of the quadrature rule 37
1.3.2 Properties of the discrete problem 40
1.3.3 Convergence theorem 42
2 Two-dimensional convection-diffusion problem 49
2.1 General remarks 49
2.1.1 Qualitative behaviour of the solution 49
2.1.2 The weak formulation 53
2.2 The scheme with the fitted quadrature rule for a problem without parabolic boundary layers 53
2.2.1 The differential problem 54
2.2.2 Construction of the quadrature rule 61
2.2.3 Properties of the discrete problem. The convergence result 65
2.3 Construction of the method for the problem with regular and parabolic boundary layers 80
2.3.1 Properties of the differential problem. 80
2.3.2 Construction of the fitted quadrature rule. 91
2.3.3 The properties of the discrete problem 95
3 Numerical solution of the discrete problem 100
3.1 Numerical experiments in the one-dimensional case 100
3.2 Test example in the two-dimensional case 105
3.3 The grids 106
3.4 Methods for solving the discrete problem 109
3.5 Discussion of the numerical results. 116
References 121
Triangulation of two-dimensional multiply connected domain with concentration and rarefection of grid
Pyataev S.F.
Introduction 130
1 Some recommendations on choice of the function of steps 131
2 Fragmentation of the boundary of multiply connected domain 134
3 Triangulation of a domain 138
4 Conclusion 146
5 Appendix 1 154
6 Appendix 2 154
7 Appendix 3 154
8 Appendix 4 155
9 Appendix 5 155
10 Appendix 6 156
11 Appendix 7 156
12 Appendix 8 158
References 159
A batch of applied programs for numerical solution of convection-diffusion boundary-value problem
Kireev I.V., Pyataev S.F., Shaidurov V.V.
Introduction 161
1 An algorithm of determination of partial derivatives 162
2 Construction of a sequence of embedded grids 164
3 Program realization of the algorithm 167

A difference scheme for convection-diffusion problem on the oriented grid

Kalpush T.V., Shaidurov V.V.

Introduction 177
1 The difference problem statement 178
2 The difference approximation of convective item on an arbitrary trianqular stencil 179
3 Construction of inverse-monotone second-order finite-difference scheme 181
4 The algorithm for the orientation strengthening of the difference grid 188
5 The numerical experiment 190
References 193
A two-dimensional nonuniform difference scheme with higher order of accuracy
Bykova E.G., Shaidurov V.V.
Introduction 196
1 Boundary-value problem and its nonuniform difference approxima- tion 197
2 Stability and solvability of the grid problem 200
3 Convergence of the nonuniform difference scheme 206
4 Numerical examples 210
References 213
A nonuniform difference scheme with fourth order of accuracy in a domain with smooth boundary
Bykova E.G., Shaidurov V.V.
Introduction 214
1 Boundary-value problem 215
2 Construction of the difference grid and classification of its nodes 215
3 Interpolation formula 217
4 Construction of difference approximation 218
5 Stability, solvability and convergence of the grid problem 226
6 Numerical examples 235
References 239
Experimental analysis of fourth-order schemes for Poisson's equations
Bykova E.G, Rüde U., Shaidurov V.V.
Introduction 240
1 Formulation of the differential problems. 230
2 Tested methods 232
2.1 Five-point scheme and Richardson extrapolation 232
2.2 Nonhomogeneous Bykova-Shaidurov scheme 232
2.3 Khoromskij combination 233
2.4 Nine-point box scheme 233
3 Two ways to compare the computational cost 234
References 241

