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Completely splitting method
for the Navier-Stokes problem

Bykova E.G., Kireev I.V., Riide U., Shaidurov V.V.

Introduction

In this part we consider two-dimensional time-dependent Navier-Stokes equa-
tions in a rectangular domain and study the method of full splitting [4]-[7].
On the physical level, this problem is splitted into two processes: convec-
tion-diffusion and work of pressure. The convection-diffusion step is fur-
ther splitted in two geometric directions. To implement the finite element
method, we use the approach with uniform square grids which are staggered
relative to one another. This allows the Ladyzhenskaya-Babuska-Brezzi con-
dition for stability of pressure to be fulfilled without usual diminishing the
number of degrees of freedom for pressure relative to that for velocities. For
pressure we take piecewise constant finite elements. As for velocities, we use
piecewise bilinear elements.

1 The formulation of the problem and the splitting
into physical processes

In the rectangular domain {2 = (0,1) x (0,1) with the boundary I we
consider the two-dimensional Navier-Stokes equation

Ju 1 .
E—EAH-F(U'V)U‘FVP—f mn QX(OaT)a (11)

the continuity equation

V-u=0 in £x(0,7T), (1.2)
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the boundary condition

u=g on I x[0,T], (1.3)

and the initial condition
u(‘raya 0) = UO(.’E,y) on (2. (14)
Here u(z,y,t) = (u1(x,y,t),us(x,y,t)) is an unknown speed vector-
function; p(z,y,t) is an unknown function; f(z,y,t) = (fi(z,y,t),
f2(may7t)) is a given vector—function; g($,y,t) = (g1($,y,t),gg($,y,t)) is
a given continuous vector-function on I' x [0,1]; ug(z,y) = (uo1(z,y),

uo,2(x,y)) is a given continuous vector-function on {2; Re is the Reynolds
number.

If these equations have a solution u, p then one can see that a pair u, p+c
is also a solution for any constant c¢. In order to exclude the multivalence
we demand that

/Qp dn = 0. (1.5)

Rewrite the vector equation (1.1) in the form of two scalar ones. Put
v = 1/Re and replace the third term of (1.1) by equivalent sum of two
expressions on account of the continuity equation:

5t vAu; + E(u -V)ug + Edw(ulu) + 9 = fi, (1.6)
8U2 1 1 . 6]) -
5t vAus + E(u -V)ug + Edlv(UQH) + oy fo. (1.7)

For the obtained problem (1.2)—(1.7), at first we consider Chorin’s split-
ting method [4] - [7] (of fractional steps) into two physical processes: transfer
with diffusion of substance and pressure work. Therefore, the time interval
[0,T] is divided into m equal segments, 7 = T'/m long, by the nodes of the
time grid

W ={tp:tr =kr, k=0,1,...,m}.
Let us introduce also
w” =7\ {0}.

Instead of the exact functions u and p we will seek a vector-function uj (z,y) =
(uf (2, ), u3 4 (x,y)) and a function pf(z,y) which are determined at a dis-
crete instant of time ¢ = k7.

At first we use the condition (1.4) and put

ug(may) = uO(.’L',y) in . (18)
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Then we construct the sequence of problems alternating on every seg-
ment [tg,tr+1]. Two first problems for s = 1 and s = 2 are not con-
nected with each other and are required to determine the vector-function

V(.’I],y,t) = (1)1 (.’L’,y,t),UQ(.’L',y,t))i

. 1 1. 1, .
aait —vAv, + 5(11; - V)vus + Edzv(vsu;) = Efs in 2 x (tg, tg+1),(1.9)
Us = Gs on I' x [tkatk-i-l]a (110)
vs(@,y,tr) = ug 4 (z,y) in £ (1.11)

After this the obtained function at time level ¢;41 is used as an initial
value for the other problem for the determination of the vector-function
w(z,y,tr) = (wi(z,y,tr), wa(z,y,t)) and the function ¢(z,y,tx) on the
same segment [ty try1]:

88—‘: + Vg = %f in 2% (tk,tet1), (1.12)
divw=0 in 2 X (tg,tg+1), (1.13)
w-n=g-n on I X (tg,trt1), (1.14)
w(z,y,tp) = v(z,y,tpr1) in  §2, (1.15)

where n(z,y) is the vector of outer normal to the boundary I" at a point
(z,y) € I', which is redefined at a vertex of a square.

The solution of the splitting problem at the time point #;; is a result
of a loop on the segment [tg, tgy1]:

u;—‘,—l(xﬁy) = w(xayatk—i-l): (116)

Pre1(®,y) = q(@,y,tet1) in £ (1.17)

Repeating this computation loop for £ = 0,...,m — 1, we sequentially
obtain the values of functions u” and p” at time levels 7,...,T.

Remark 1. It is necessary to pay attention to the change of the bound-
ary condition (1.14) in comparison with (1.3). This condition follows from
(1.3), but it is less limiting. The substitution is necessary because the con-
dition

w=g on I X[ty tg+1]

gives an overdetermined problem. O
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2 Discretization of the fractional step of pressure
work

Consider the problem (1.12)—(1.15) and sequentially carry out the time dis-
cretization and then the space one. The time discretization is realized by
the replacement the derivative 0/0t with the difference ration:

%(.’L’,y,t) ~ (wl (z7y:t) - wl(a"ayat - T))/T‘ (21)

After rearranging the known terms to the right-hand side we obtain the
stationary differential problem at time level tj1:

1ojgr, 00" 1 ey 1y

—wi + 9z~ 21 + —wi in 2, (2.2)
1 .., o 1., 1, .
;wé"'l + ay =3 k1 ;wé in 2, (2.3)
o k+1 9 k+1
“élx lgz =0 in 0 (2.4)
with the boundary condition
witl.n=gt.n on I (2.5)
k

From here on for an arbitrary function the notation u* means u(ty).

For the space discretization we apply the finite element method. There-
fore turn to the generalized formulation. Consider three arbitrary functions
vi(z,y), va(z,y), r(x,y); two ones satisfy the boundary condition

ving +vang =0 on I. (2.6)

Multiply the equations (2.2)—(2.4) by vy, v, q respectively, combine them,
integrate by parts over {2, and apply the condition (2.6). As a result, we
obtain

1 ov
St oo+ Tk ea - (44, G2)
/)

. ov Awkt! Awkt!

- (qk+1= a—2> + ( 81113 T + 82 ;T (27)
Y)o o Y o
1 k+1 1 k+1 k

= , V1) +§( 2 ,v2)9+;(wl,v1)9+—(w2,v2)g
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where (-, ) means the scalar product

(u,v) = /qu ds.

In this paper from time to time we shall use a method of fictitious
domains in the small (near the boundary). First, let us introduce the domain
2, =(0,1) x (=h/2,1+4 h/2) and divide it into n(n + 1) squares

€it1/2,j = (@4, Tig1) X (yj—1/2;yj+1/2)

by lines
xz;=1th, 1=0,...,n;
y']+1/2:(]+1/2)h, ]:—1,,’[7,
For vl,wf“ we introduce the space H, of admissible functions which

are continuous on (2, and bilinear on each €ir1/2,; C §21. The degrees of
freedom of these functions are referred to the nodes z; j11/2 = (i, Yj41/2)-
We denote the set of these nodes

0h = {zij412:1=0,...,n, j=—1,...,n}
and introduce its inner part
o =0hn .

Then as the basis function corresponding to the node z; ;.12 we take
Pa,ij+1/2 € Hy which equals 1 at z; j11/» and 0 at any other node of oh.
The arrangement of nodes 2 and some basis functions from H, are
represented in Fig. 1, 2.
Second, let us introduce the domain (2 = (=h/2,1+ h/2) x (0,1) and
divide it into n(n + 1) squares

€ij+1/2 = ($1—1/2;33i+1/2) X (YjsYj+1)

by lines
$l+1/2:(l+1/2)h, Z:—].,,TL,
yj =3jh, j=0,...,n.
For vg,wg"'l we introduce the space H, of admissible functions which

are continuous on {2, and bilinear on each €ij+1/2 C §22. The degrees of
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Fig. 1. Nodes 2} of degrees of freedom for the first component of velocity

Fig. 2. Basis function ¢, ; j41/2 for the first component of velocity.

(marked by sign e).

1 i+1
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Fig. 3. Nodes 2% of degrees of freedom for the second component of velocity
(marked by sign *).
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Fig. 4. Basis function ¢, ;1,2 ; for the second component of velocity.
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freedom of these functions are referred to the nodes zjt1/2,; = (Zit1/2,;)-
We denote the set of these nodes

Qg :{Z'H-l/?,j 1= —1,...,’”, jZO,,’I’L}
and the set of its inner nodes
) =8N Q.

Then as the basis function corresponding to the node z;y1/2; we take
$yiv1/2,j € Hy which equals 1 at z;,, /5 ; and 0 at any other node of {2,.
The arrangement of nodes of (2, and some basis functions from H, are
represented in Fig. 3, 4.
Finally, let us introduce the domain {23 = (—h,1+ h) x (—h,1+ h) and
divide it into (n + 2)? squares

eiv1/2,j+1/2 = (Ti, Tiy1) X (Y5, Yj+1)
by lines
z;=1th, 1=-1,...,n+1;
Y; =jh, j=-1,...,n+1.

For r, ¢**! we introduce the space H,, of admissible functions from Ly ({2)
which are constant on each €112 j11/2 C {23. The degrees of freedom of
these functions are referred to the nodes 212 j41/2 = (Tiy1/2,Yj41/2). We
denote the set of these nodes

0h = {Zig1/25 i =-1,...,n, j=—1,...,n}
and introduce its inner part
o =0rna.

Then as the basis function corresponding to the node 2;11/2 j1/2 we
take ¢p 117254172 € Hp which equals 1 at z;11/9 j11/2 and 0 at any other
node of 02%.

The arrangement of nodes of 2% and some basis functions from H, are
represented in Fig. 5, 6.

Introduce the grid boundary I'* as the set of midpoints of boundary
edges

r=@hruvohnr,

and introduce also the scalar product for vector-functions

(11, f)Q = /Q(Ulfl +U2f2)d9.
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Fig. 5. Nodes 2% of degrees of freedom for pressure (marked by sign m).
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Fig. 6. Basis function ¢, ;11/2,41/2 for pressure.
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2.1 Integration over {2

Theoretically we realize two possibilities. One of them consists in the strong
integration over {2 and gives several types of discrete equations inside a
domain and near a boundary. In another case the integration is imple-
mented over a domain with a small fictitious additional subdomains that
provides discrete equations to be more uniform and simpler for coding. To
realize the first possibility, we formulate the Bubnov-Galerkin method for
the problem (2.7) using the introduced designation: find ¢"(z,y) € H, and
wh(z,y) = (wl(z,y),wh(z,y)), wh € H,, wi € H,, which satisfy the
boundary condition

w'-n=gl.n on I" (2.8)

and the integral relation
1 5 [y ok Lokt Lok
W V) g~ (g, 000 V) + i W) = S(EF V) S (wh V) (29)

for an arbitrary function r(z,y) € H, and for a vector-function v(z,y) =
(vi(z,y),v2(x,y)),v1 € Hy,va € Hy, which satisfies the boundary condition

v.n=0 on IM (2.10)

Let us write the unknown functions in the form

n n-—1
wi(z,y) = Z Z wiz,i7j+l/2(pw,i7j+l/2($: Y)
i=0 j=0
n—1 n
wé’(w,y) = Z ng,i+1/2’j()0y,i+l/2,j($ay)a (2.11)
i=0 j=0
n—1ln—1

qh(l’;y) = Z Z Q?+1/2,j+1/2@p,z‘+1/2,j+1/2(33;y)-

i=0 j=0

Then the problem (2.8) — (2.10) becomes equivalent to the system of linear
algebraic equations. To get the diagonal mass matrix we shall systematically
use the following quadrature formula which is the Cartesian product of the
trapezium formula:

z+h/2 y+h/2 h2
u(z,y)d? = T u(z £ h/2, y £ h/2). (2.12)

z—h/2y—h/2 *,%
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Here the sign > with the pointer +, £ means the summation of an expres-
sion with 4 possible arguments obtained by fixing of one sign + or — at each
position =+.

For example, let us first assemble the impact containing v; only, not vy
or r. Consider the element e;, 4/, ; and examine the first term in (2.9). Due
0 (2.12) we have
1 h h? h
= / wividf) = yp Z(Uh V1) i1 /241 /2,512 (2.13)

o
.. _ +,+
i+1/2,]

This gives the following impact to the left-hand side of the algebraic bilinear
form:

h h h h
[wl,i,j—l/Q’ W1 i5+1/2> Wi,i41,5-1/20 w1,1+1,j+1/2]

h2/47' 0 0 0 ’1)1’2'7]',1/2
0 h%/4r 0 0 V14

/ ) R (2.14)
0 0 h /47’ 0 U1,i41,j—1/2
0 0 0 h2/47' vl,i+17j+l/2

From the second term in (2. 9) we get
61)

/ h= 5, 4~ Z (01,141 = V1,0)qy 1 /2) 1 /2 (2.15)

€it1/2,j

This gives the following impact to the left-hand side of the algebraic bilinear
form:

h h —h/2 0 h/2 0
[qi+1/2,j—1/2’ ‘11+1/2,j+1/2] 0 —h)2 0 h/2
T’ (2.16)
'[U1,i,j—1/27 U1,i,j+1/25 V1,i41,5—1/2> vl,i+1,j+1/2] .

The sign [ ] means the transposition of a vector or a matrix.
Using the quadrature formula (2.12) for the right-hand side of (2.9), we
get

1 k—l—l 1 ]v+1 h2
3 v+ — wlvl N ~ Z ’U-f-E

€it1/2,5

wq 1)1) .
H1/24+1/2, j+1/2
(2.17)
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This gives the following impact to the right-hand side of the algebraic equal-
ity:

2 2 2 2
Ikt + h_,wk [apyest + h_,wk
Q Y1.4,j—1/2 T g T Lij-1/20 @ I j+1/2 T g T Lig+1/2

2 2

h? h2
k+1 k k+1 k
?fl,i-‘rl,j—lﬂ+Ew1,i+17j—1/2’ gfl,z‘ﬂ, j+1/2+zw1,i+1, J+1/2

T
'[U1,i,j—1/2; U1,4,j4+1/25 V1,041, j—1/25 V1,i+1, j+1/2] . (2-18)

For the further study of grid equations we make its nodal assemblage.
For example, in order for an arbitrary value of vy ; j;1/2 to satisfy the equal-
ity (2.9), one has to equate its coefficients in the right-hand and left-hand
sides. For anode z; j;1/2 € 2% four elements €i+1/2, j+1/2+1/2 have nonzero
coefficients. Summing these coefficients over four elements, equate them:

h_Qwh 4 h( h _ . h )
T Lijt1/2 Qit1/2,5+1/2 — 9i—1/2,j4+1/2
h? R s
= Witz Ty iy

(2.19)

i=1,...,n—1,j=1,...,n—2.

Now consider the impacts of elements which are cut by the boundary
Iy, for example, €;,1/2. Take into consideration twice as small domain
€it1/2,0 N §2 and transform (2.13) into the approximate equality

1 h?
— / wfvld() ~ § Z(wfvl)iH/Qil/Q, 1/4+1/4- (2-20)

T
+,+
€it1/2,0M82 ’

This gives the following impact:

h h h h
[wl,z‘707 Wy 4,172 Wi,i+1,00 w17i+1,1/2]

h2/8T 0 0 0 1,i,0
0 h*/87 O 0 V1,i,1/2
0 0 h*/8 0 V1,i41,0 (2.21)

0 0 0 h*/87| [v1i41,1/2

For the second term in (2.9) we get

ov h
/ qha_xldn ~ Zqﬁrl/z,l/z Z(’Ul,i+1 — V1,i)1/441/4- (2.22)
+



114 Bykova E.G., Kireev I.V., Riide U., Shaidurov V.V.

This involves the impact

481 /2.1 o) [=h/4, —h/4, h/4, h/4]

(2.23)
'['Ul,i,Oa U1,i,1/25 V1,i+1,05 Ul,z‘+171/2]T-

For the right-hand side of (2.9) we have

1 kg1 1 > < k+1 R
v + wlvl df? ~ v + —wiv; .
/ <2 Z 16 87 Jirpatgey

€iy1/2,0M82
(2.24)
This gives the following impact to the right-hand side of the algebraic equal-

ity:

h_2 k41 h_ k fk+1 h2 k
167140 T gr Wi 4,05 111/2 wlzl/? )
) ) (2.25)
fk+1 h wk ) fk+1 k
11+10 8T 1,i+1,0 1,i41, 1/2 8T 1@+1 1/2
'[Uu,o; U1,i,1/25 V1,i+1,05 U1,1+1,1/2]T-
Now assemble the algebraic equations corresponding to vy ;1/2, 1 = 1,...,n—
1, over 4 elements €;41/20 N {2 and €415 1:
?wl,z}l/Q + I(qi+1/271/2 - qi71/2,1/2)
= ?wl,i,l/Q + ?flj,l/w (2.26)
1=1,...,n—1.

The similar algebraic equations correspond to v; ;0 and are assembled over
2 elements €;11 /2,9 N §2 only:

R b h
Ewl,i,o + Z(qi+1/2,1/2 - ‘11‘—1/2,1/2)

h? h?
= 7Wlio + g filos (2.27)

i=1,...,n—1.
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The similar equations are valid near the upper part of the boundary I7:

%wfi,n—l/Q + %(qgﬂ/zn—lp - qzh—l/Q,n—1/2)

= %wf@nq/z ?fﬁﬂl—yw (2.28)
gw?zn + g(q?+1/2,n—1/2 - qlh—1/2,n—1/2)

=l + AT 229
i=1,...,n—1.

Analogously, the equation corresponding to vy ;41/2,; inside of the do-
main {?2 is formulated in terms of the coefficients of the stiffness matrix and
the right-hand side of four elements €;11/9+1/2, j+1/2:

h2
7w§,z‘+1/2,j + h(qzh+1/2,j+1/2 - qzh+1/2,j—1/2)
) (2.30)
= h—wk + f
T 2i41/2, 2 z+1/2 3’

i=1,....n—2,j=1,...,n—1.

Near the boundary I, we get four types of equations which are similar to
(2.26)—(2.29):

3h? 3h
?“&1/27]‘ + T(q{t/27j+l/2 - qiz/2,jfl/2)
3n? 3h?
= ZwQ,l/Q,j + ?fgj/lj; (231)
h? h
E“’go,j + Z(q{t/27j+l/2 - q{z/z,jfl/2)

h’2 k+1
- wh o L h f2 T (2.32)
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3h? 3h
?w;nq/z,j + Z(q271/2,j+1/2 - qul/z,jfl/z)

3h? 3h?
= ?w;n—l/&j + ?f;;l_l/zj: (233)

B

47 P2 + Z(q2—1/2,j+1/2 - q2—1/2,j—1/2)
h? h?
8

= Vg T g o, (2.34)

2,m,5°
i=1,...,n—1.

Now let us study the impact containing r. This time we use the following
quadrature formula which is the Cartesian product of the central rectangle

formula:
z+h/2 y+h/2

u(z,y)d2 ~ h*u(z,y). (2.35)
z—h/2y—h/2

Consider the element €, /5, j11/2 and examine the third term in (2.9). Due
to (2.35) we have

/ r div w'd

€it1/2, j+1/2

(2.36)
~ h h h h
N Titv1/2, j+1/2(w17i+1, ja1/2 ~Wiigyy2 T Wo ity je1 T w2,z‘+1/2,j)'
This gives the following impact to the left-hand side of the algebraic bilinear
form:

h h h h
[wl,z‘7j+1/2= Wy iv1,5+1/20 Wait1/2,50 W2it1/2, j+1] (2.37)

'[_h: h, —h, h]T : [Ti+1/2, j+1/2]-

This formula contains all entries of the stiffness matrix associated with
Tit1/2, j+1/2- Lherefore the assembly of the nodal equations corresponding

to ri-i—l/?, j+1/2 gives
h h h h
h(w1,i+1,j+1/2 - wl,z‘,j+1/2) + h(w2,i+1/2,j+1 - w?,i+1/2,j) =0. (2.38)
Now we consider the boundary condition (2.8). First we introduce the
discrete analogue of I, I';:
F:f = ‘Qf nru {20707 20,ns #n,0, Z’ﬂﬂl}:
F; = Qg nIru {2070; 20,n5 #n,0, Zmn}-
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Doing the simplifications which are connected with the concrete form of
normal vector, we get

wh =gt on I, (2.39)
wh =gs™ on I} (2.40)

The question of consequence of the boundary condition (2.10) arises.
For example, consider the nearboundary cell €,,_;/5 ;. From the concrete
form of the external normal (1, 0) and the condition (2.10) at the node
(Tn, Yjy1/2) it follows that

V1n,j+1/2 = 0. (2.41)

Hence, for any coefficients the terms containing vy ; j;11/2 in the both
sides of the equality (2.9) do not give an equation corresponding to this
value (or what is the same to the node z, j11/2). Analogously, for the near-
boundary cell e;,,_; /5 we have

1)271‘_1_1/27” =0. (242)
Here this value turns to zero and there is no grid equation corresponding to
it for w”, ¢". At last, both situations (2.41), (2.42) take place at the same
time for the node e,,_; /5,1 /2 and no equation exists for two nodes z,, ,,_1 /2
and z,_1/2.,- One of three situations takes place along all grid boundary
.
To do the grid equations (2.19) — (2.38) more habitual we introduce the
following notations:

()

s (u(z + h/2) — u(z — h/2))/h,
Uy(?/)

(u(y +h/2) —uly = h/2))/h,

u

1
f,i,n—l/? + Zw{zl n (2.43)

—h
Wy,i,j+1/2
1=0,...,n;

3 1
—h _ h h .
Wa1/2,j = 3W2,1/2,5 T 7 W2,0,55
3, 1,

wg,n—l/lj = 3W2.n-1/2, + 7 W25 (2.44)

—h _ . h . .
Wy iv1/2,5 = Wait1/2,5 * = 0,...,n—1;
j=0,...,m;
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rk+1 -k -k =k+1

k+1
» J2 , Wy, W3, g1

, gé""l Combining the

equations (2.26) and (2. 27) we get the equation like (2.19):

h2

h2

—h h h
7 Wi/ + h(qi+1/2,1/2 - qi—l/?,l/?)

(2.45)

k41
111/z+ f“l/z;

The similar equations are obtained by combining of (2.28) and (2.29), (2.31)
and (2.32), (2.33) and (2.34). Dividing the obtained equations by h? we get

1 1
;u‘)f +¢ = —w1 + - ka on 0 (2.46)
1 1
—W5 g = —wy + 5 f’c+l on 3, (2.47)
—h h
(0))e + (W5)s =0 on 2 (2.48)
The boundary conditions follow from (2.39) - (2.40):
o = gttt on M, (2.49)
wh =gi™ on I (2.50)

It should be noted that we obtained the difference scheme with stag-
gerred nodes which was very popular at the end of 1970-s and at the begin-

ning of 1980-s.

Enumerate the nodes 2%, 02 0 in lexicographical order from 1 to
3n? — 2n. In (2.48) rearrange the terms which are known due to (2.49),
(2.50), to the right-hand side. As a result, the grid problem (2.41)—(2.50)
can be written in the following matrix-vector form:

1

n(n—1)

AT

Al Wl Fl
1 Wy | = | F 2.51
; n(n—1) AQ 2 2 ( )
—AY i Q F3



Completely splitting method for the Navier-Stokes problem 119
Here

Wy = (117?(21,1/2);717?(21,3/2); e ;u_}?(zn—l,n—l/z))T;

N

Wo = (05 (212,1), 05 (21/2,2), - - -, 08 (Zp—1/2.0-1)) "3

Q= (qh(zl/2,l/2)a qh(21/273/2)7 cees qh(zn71/27n71/2))T;

Fy = (Fi(z1,1/2), Fi(21,3/2), - - -aFl(anl,nfl/Q))Ta

1 1
where F1(z;j41/2) = —w Zij+1/2) + 5f1lc+1(zi7j+l/2)§
)

07 (
Fy = (Fy(21/2.1), Fa(21/2,2), - - '3F2(2n71/27n71))Ta
1 _ 1-
;wé (zit1/2,5) + §f§+1(2i+1/2,j);

where Fy(2i11/2,5) =
F; = (F3(21/2,1/2); F3 (21/2,3/2); cees F3(Zn—1/2,n—1/2))T;

where F3 (2112 j41/2) = 5i,0%§f+1(20,j+1/2) - 6i,n71%gf+l (Zn,jt+1/2)
+50,j%g§+1(2i+1/2,0) —0n-1,j %g§+1(2i+1/2,n);

here 6;; is the Kronecker symbol that equals 1 for ¢ = j and 0 otherwise;

Ey(n-1) is the n(n—1) xn(n—1) identity matrix; A; is an n(n—1) xn(n—1)

matrix of the block form
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where ® is the tensor product; B is an (n — 1) x (n — 1) matrix of the form:

Let us prove that the problems (2.51) and (2.41)—(2.50) are stable with
respect to the initial data and the right-hand side f¥*1 for the components
of a speed vector. For this purpose we introduce grid norms which are anal-
ogous to functional Lo-norms:

Wiz = (lwillf p + [lw2]3 5)

n—1n—1

where
willf =5 > wizijq1p), (2.52)

i=1 j=0

1/2

n—1n—1

lwall3 ), = h* Y > wh(zi1/2,5),s (2.53)

=0 j=1

and
n—1n—1

||Q||§,h =1’ Z Zp2(2i+1/27j+1/2)- (2.54)

h f i=0 j=0
Theorem 1. ]
ATt =0 on It gtt=0 on F; (2.55)

for the problem (2.41)—(2.50) then the following a priori estimate holds:
_ _ T, g
1" |22 < W5 (|2 + 5 182 (2.56)
2

Proof. Introduce the scalar products:

n—1ln—1
(u,v)1,n = Z U(Zi,j+1/2)v(zi7j+l/2):
i=1 j=0
n—1ln—1
(W,v)2n = Y > u(zip1/2,)0(Zig1/2,5);
i=0 j=1
n—1ln—1
(P;@Q)3,n = P(Zz‘+1/2,j+1/2)Q(Zi+1/2,j+1/2)-

-
Il
<)
<.
Il
=)
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Owing to the zero boundary value (2.55), the simple regrouping of terms
yields two equalities which are the grid analogues of the integration by parts
formula:

((wl)gap)f},h = _(wlapé)l,ha

(2.57)
((w2)§,,p)3,h = —(w2,p§,)2,h-
Multiply the equation (2.46) by wf and sum up over 27:
1 1 1 -
;(w{z:u_}{z)l,h + (QQﬂD?)l,h = ;(w{g:u_}?)lﬁ + 5( k+17u_}?)1,h' (258)

The equation (2.47) is mulpiplied by w# and is summed up over 25:

1 1
—(w}, w})a,n + (qg,@b,h = —(wh, w2 + 5( St wh)an.  (2.59)

Bl
Bl

The equation (2.48) is multiplied by ¢" and is summed up over £22:

(@1)g,4")3.n + ((@3)5.4")3,n = 0. (2.60)

y
Now we combine the equalities (2.58) — (2.60) and apply the grid formulae
of integration by parts. As a result,

1 1 1 .
;(wf,wfh h+ ;(1173,1173)2,/1 = ;(ﬂ){”aw?)l,h
(2.61)

1 _ 1 . B 1 . B
+—(1D§aw;’zl)2,h+§( 1’”+1aw{1)1,h+§( SRR

Bl

We multiply this equality by 7 and apply the Cauchy-Bunjakowski inequal-
ity to every term of the right-hand side:

_h _h _k _h _k _h
@113 + @5 1155 < N@F]1all@7 11,0 + 105 [|2,0]105 |2,
(2.62)

T 7k _ T\ 7k _
+ LA all@t o + S1ET ol llo.n-

We again apply the Cauchy-Bunjakowski inequality to two pairs of terms
of the right-hand side and cancel the coincident multiplier:

_h —h —k —k
Ny 117 + 105112,)" " < (Df 117 5+ 5113 )"

T Fk : ik
+§(||f1+lllih o P2 R
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In view of the accepted notations this inequality coincides with (2.56). O
Now we construct the problem for determination of pressure and consider
the question of its stability. To do this, take the difference derivative (); of

(2.46) at nodes of 24:

k

(@h)g +7(gh)s = (@h); + =

g+ 5 (A (2.63)

o
T

To define the derivative (w{;); we take the difference derivative ()y of

(2.47):

(@); +7(gh); = (@), + S (A (2:64)

Now we eliminate (u_)f)z and (w{;); in (2.48), divide the obtained equality
by 7, and rearrange the known expressions to the right-hand side. As a result
we get

1 1
h Ry _ _ti-ky _ Lk
—(qi)i (qu);— T( 1); T( 2); (265)
1, = 1 '
—5( f+l);—§( 2’““)0 on 2.

And at the nodes of I'} and I}’ the other conditions of Neumann type follow
from (2.46), (2.49) and (2.47), (2.50). For example, on I'* from (2.46) and
(2.49) it follows that

¢ = —%g{““ + %wf + %ff“ on Ih (2.66)
On I’} from (2.47) and (2.50) it follows that
g = —155“ + 111)2 + lfg’““ on I (2.67)
Y T T 2 Y
The system of linear algebraic equations (2.65) — (2.67) can be reduced
to the (Schur complement) system
BQ =G (2.68)
with the symmetric matrix
B=—-ATA, — Al a, (2.69)
and the right-hand side

1
G=-F+AlF + AL R, (2.70)
T
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This matrix is the same one as for the discrete Poisson equation with the
Neumann boundary condition. It is well-known that this matrix is singular,
the dimension of its kernel equals 1, and the basis of the kernal consists of
only constant n2-vector

S=(1,....1). (2.71)

Thus, the system (2.68) has a solution if and only if the right-hand side G
is orthogonal to S. It means that

Y Gij=0. (2.72)

Let this be valid. Then the system (2.68) has the infinite number of solutions.
We take (normal) one which is orthogonal to S:

zn: Qij = 0. (2.73)

ij=1

Note that this equality is the discrete analogue of the condition (1.5).

In Theorem 1 we considered the impact of initial values and the right-
hand side f when computing u. Now let us study the situation when a non-
zero right-hand side arises in (2.43) owing to an approximation (truncation)
error or to a residual of iterative process. For this purpose consider the
problem

%z{t + r’;’ =0 on 00 (2.74)
%zé’ + rg =0 on % (2.75)
(A1) + (23)y = 9" on g, (2.76)
2t=0 on IM (2.77)
Z=0 on I} (2.78)

Here a grid function ¢" is defined on 2%; z" = (2}, 2h).

Theorem 2. For the problem (2.74) — (2.78) the following a priori estimate
holds:

12" L2 < el I3, (2.79)

where a constant ¢, depends on {2 only.
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Proof. Let us multiply the equation (2.74) by 2! and sum up over 2}
%(zf, 2N+ (rg,zf)Lh =0. (2.80)

The equation (2.75) is multiplied by 2% and is summed up over 2%:
%(z;}, 2)an + (¢, 23)2,n = 0. (2.81)

The equation (2.76) is multiplied by 7 and is summed up over {2:
(215530 + ((22)5, )30 = (@, 7")3.. (2.82)

Now we combine the equalities (2.80) — (2.82) and apply the grid formulae
(2.57) of integration by parts with information (2.77), (2.78):

1 1
;(nyzf)l,h + ;(zg,z{})m =", ") . (2.83)

Multiply this equality by 7 and apply the Cauchy-Bunyakovskii inequality
for the right-hand side:

2213 0+ 12313 0 < Tl8" s w1l 13,0 (2.84)
Then we consider the reduced (Schur complement) system

—(r!)e — (1)

1
o= -y on 0
x Tz y'y T

M0 on I (2.85)

h
z
h

re =0 on F;.

]
Let us orthogonalize ¢ to the function s” =1 on 2%:

(d)ha Sh)3,h st

lls"115.
In so doing the discrete Lo-norm does not increase:
It lls.n < 119" 1s.8-

The minimal nonzero eigenvalue of the matrix B in (2.85) is positive and
can be bounded from below by a constant ¢, independent of 7, h, and t.
Therefore the normal solution of the problem (2.85) is estimated as follows:

yh =g -

1 1
"]l < T—CQIIMIIM < Elld)hllmh- (2.86)
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Combining this inequality with (2.84), we get

1
12"17, 0 < —110"15.5-
C2

Take the square root and put ¢; = 1/,/¢3 to finish the proof. O

Solving the systems (2.65) — (2.67) we obtain the grid function of pres-
sure ¢" at nodes 2% at time level ¢, ;. After that, by formulae (2.46) and
(2.47) we calculate the grid functions wf and w# obviously. This calculation
conclude the description of fractional step of pressure work.

Remark 2. It should be noted that the special placing of nodes ensures
the stability of computation of pressure (see, for example, [31], [2]). O

Remark 3. The equations (2.65) contains the expression

1 k 1 k
_;(w1); - ;(wz)

which should equal 0 in consequence of the equality analogous to (2.48)
at level t = t;. But in the consequent estimation we shall use the itera-
tive methods for solving algebraic systems, which do not yield the exact
equality of the expression (2.87) to 0. This expression may be small, but
its contribution to the approximate solution has the tendency to the linear
accumulation from level to level along the time axis. Therefore, supposing
that (2.87) equals zero in (2.65), we slightly decrease the number of arith-
metic operations at every level, but we introduce an additional source of
error, which imposes requirements on an iterative process and leads to an
increase of number its iteration steps. O

Remark 4. The formulae (2.48) and (2.49) contain the difference differen-
tiation of the function ¢”. It may considerably decrease the accuracy of
calculations of wf and w? in comparison with ¢". To reduce this effect,
one should apply an iterative process which minimizes the error of iterative
approximation in the grid energy norm. O

, (2.87)

2.2 Integration with the help of small fictitious domains for
uniformity of equations

To realize the approach with fictitious domains first we consider extended
domain 7 = (0,1) x (=h/2,1 + h/2) and prolong the equation (2.2) by
smooth way into additional strips. For this purpose we prolong w¥, wf“,
dg**1 /Ox through boundary Iy using Taylor expansions of these functions

in direction y. After that we compute

. 1 . 1 8qk 1
k+ k+
1 1——2<—w1 1——wf+ 5
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in two strips {21 \ 2. Thus, we have equation (2.2) to be valid in extended
domain (2;. Similarly by Taylor expansions we prolong boundary function
¥ on 4 segments {0,1} x (—h/2,0) and {0,1} x (1,1 + h/2). It gives
boundary condition

w; = g"*! on extended segments {0,1} x (—h/2,1+ h/2). (2.88)

To simplify representation we put v = 0 and r = 0 in integral relation
like (2.9) and obtain the following Galerkin formulation: find ¢"(z,y) € H,
and wh(z,y) € H, which satisfy the boundary condition (2.88) and the
integral relation

1 1 1
;(w:{z7vl)91 - (qh7av1/ax)91 = 5( 1k+17v1)91 + ;(wf7v1)91 (289)
for an arbitrary function vi(x,y) € H, which satisfies the boundary condi-
tion

v1 = 0 on extended segments {0,1} x (=h/2,1+ h/2). (2.90)

Repeating considerations (2.13)—(2.29) on the extended domain 2, we
get the same equations like (2.19) for j = 0,...,n — 1 and some equations
for j = —1/2 and j = n+1/2. Last equations does not influence on approx-
imate solution in internal nodes and we shall omit them in our algorithmic
constructions. Thus, this way with small fictitious domains gives the uni-
form equations in all internal nodes of £2!

R R h

Wi j+1/2 + M@y 1 /2,412 — Gie1)2,541/2)
(2.91)

R E
= Wit T 5 gy
i=1,...n—1,7=0,....n—1.
with boundary conditions
h _ k1
Wi j+1/2 = Y10 5+1/20

(2.92)

i=0,n, j=0,...,n—1.

Note that in this equations we does not use any data from fictitious
domains therefore we need them only from theoretical point of view without
algorithmic complication.
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Second, we consider extended domain 25 = (—h/2,1+h/2) x(0,1), pro-
long equation (2.3) by smooth way into additional strips {22\ {2, and prolong
boundary function g&*! on extended segments (—h/2,14+h/2)x {0, 1}. Thus,
we get equation (2.3) to be valid on extended domain (2, and the boundary
condition

wh = g5t on extended segments (—h/2,1+ h/2) x {0,1}  (2.93)

Again we put v1 = 0 and r = 0 in integral relation (2.9), take {25 instead
of £2, and obtain the following Galerkin formulation: find ¢"(z,y) € H, and
wh(z,y) € Hy which satisfy boundary condition (2.93) and the integral re-
lation

2
for an arbitrary function vo € H, which satisfies the boundary condition

vy = 0 on extended segments (—h/2,1+ h/2) x{0,1}. (2.95)

Repeating considerations like (2.13)—(2.29) on the extended domain (25
we get the same equations like (2.30) for ¢ = 0,...,n — 1 and some equa-
tions for 1 = —1/2 and i = n+ 1/2. Last equations again does not influence
on approximate solution in internal nodes and we shall omit them in our
further algorithmic constructions. So, we get by the approach with small
fictitious domains the uniform equations in all internal nodes of £24:

1 1 1
;(wg7v2)92 - (qh:av2/ay)92 = _( ‘k+1:v2)92 + ;(wéc:v?)fb (294)

2
h?wg,i+1/2,j + h(qzh+1/2,j+1/2 - qzh+1/2,j—1/2)
W o (2.96)
= T Waity2 7f27z'+1/27j’
1=0,....,n—1,5=1,...,n—1,
with boundary conditions
wg,i+1/2,j = 95,—:41-1/2,j= (2.97)

i=0,....n—1, j=0,n.

The derivation of algebraic equations from (2.4) stays the same as in (2.36)—
(2.38).

One can see that we directly obtain the system of algebraic equations
like (2.46)—(2.50) then all representations and conclusions (2.52)—(2.87) are
valid within change w; by w;. Thus, this problem is stable due to Theorem
1, 2.

So, we indeed is not need additional equations and unknowns from fic-
titious domains to find approximate solution inside domain 2.
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3 Discretization of the fractional step of
convection-diffusion

3.1 Further splitting and discretization of the equation for the
first component of velocity

Now we consider the problems (1.9) — (1.11) in turn for s =1 and s = 2.
First problem has the form:

ov 1 1. 1

8_151 —vAv + E(u; -V)vg + Edw(vlu;) = §f1

in 02X (tk, tet1), (3.1)
v =g1 on I'X [ty tgs1], (3.2)
U1 (.’I,',y,tk) = u‘lr,k(x:y) in £ (33)

Once more realize the splitting of this step in the y and z directions. At
first we use the initial condition (3.3) in the following form

w(z,y,t) = a(z,y) on 0. (3.4)
To simplify the notations, in this section we put
a(z,y) = ui x(z,y) and  b(z,y) = uj i (z,y). (3.5)

Then two problems are solved on the segment (¢, ts+1). The first problem
contains the space derivatives only with respect to y:

ow w1 0w 19(bw) 1 .
E - 1/6—:1/2 Eba—y 58—31 = Zfl in f2x (tk,tk+1), (36)
w=gy on Iy, X[ty tg1], (3.7)

where

Ip={(z,y) e (x=0)V(x=1), ye[0,1)}
Iy={(z,y)eI':2€0.1), (y=0)V(y=1}

Remark 5. It is necessary to pay attention to the modified boundary
condition (3.7) in comparison with (3.2). The condition (3.7) follows from
(3.2), but it is less restrictive. On the assumption that

w=g¢; on I X [tg,trs+1]

instead of (3.7) we should obtain an overdetermined problem. O
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The second problem contains the space derivatives only with respect to

ot 922 2%z " 2 oz
u=g1 on Iy X [tg,trs1], (3.9)
u(z,y, tk) = w(z,y,try1) on Q. (3.10)

2
ou 0%u 1a8u la(a,U) — %fl in 2 x (tkatk+1); (38)

The solution of this problem is the result of a loop of two fractional steps
on the strip [tx, try1]:

v1(2, Y, ter1) = u(@,y, tey1) on L2

Now consider the discretization of the problem (3.4), (3.6) — (3.7). The
time discretization is achieved by the difference method by means of substi-
tution (2.1). After rearranging the known terms to the right-hand side we
obtain the parametric family (with a parameter z) of stationary ordinary
differential equations at time level t;41

1 o, O0%wMt 1 9wt 19wttty 11,
1 w1 1, 1 ——a+- 3.11
7 Y Jy + 2 Oy + 2 Oy 7 + 4f1 ( )

in {2 with the boundary condition
whtt = gf*1 on T,. (3.12)

For the space discretization we apply the finite elements method. There-
fore we turn to the generalized formulation. Take an arbitrary function
v(z,y) which satisfies the condition

v=0 on I (3.13)

Multiply the equation (3.11) by v and integrate by parts over {2 with ap-
plication of (3.13). As a result, we obtain the equality

1 o1 awarl 8_1) 1 awk+1
T(w 7U)Q+V< 83/ 76y Q+2 b 83/ , U 0

(3.14)

1 k41 8'[} . 1 1 k+1
5 <bw '3y Q— T(a,v)g+4( 1 0)0

To approximate this problem, we employ the space H, introduced in section
2. Besides, denote the following set of boundary nodes by I'#:

It ={zi0=(2:,0), 2in= (25,1):i =0,1,...,n}. (3.15)
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Again theoretically we realize two possibilities: the integration over (2
and the integration over domains with small fictitious additional subdo-
mains to simplify discrete equations. The realization of first approach gives
the following Galerkin scheme for the problem (3.12)—(3.14): find a function
wh(z,y) € H, which satisfies the boundary condition

wh = gt on TP (3.16)

and the integral relation

l(wh 1)) +v a_wh % _|_1 b% v
T el oy " dy), 2 o’ ),
L Y L L e

5 (bw ’8y>9_ T(a,v)g+4( 1T v)e

for an arbitrary function v € H, which satisfies the boundary condition

(3.17)

v=0 on Il (3.18)

We will seek the unknown function w” in the form

wh(@,y) =D Wy P12 (@, y). (3.19)

i=0 j=—1

The problem (3.16)—(3.18) is equivalent to the system of linear algebraic
equations with respect to unknowns wz’.‘ 112" To form the coefficients of
this system, we suppose that

a€H,, beH,. (3.20)

This will be ascertained during the final assembling of the discrete time-
dependent problem.

To simplify the mass and stiffness matrices, we again use the trapezium
quadrature formula (2.12). Consider the inner element e;,.1 /5 ; = (%i, Tiy1)X¥
(yj—1/2>Yj+1/2)- Take the first term in (3.17). Since w" and v belong to H,,
likewise (2.13) we get

1 h?
; / whvd() ~ 4— Z(whv)i+1/2i1/27]~i1/2. (321)

T
et £+
i+1/2,;
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This gives the following impact to the left-hand side of the algebraic bilinear
form:

h h h h
[wz‘7j71/27 Wi j+1/2> Wit1 j-1/25 wz‘+17j+1/2]

h2/47' 0 0 0 Vi j—1/2
0 h2/4:7' 0 0 vi,j-i—l/?
0 0 h*/4r 0 Vit1,j-1/2 (322)
0 0 0 h2/47' ’UZ'+17]'+1/2
From the second term of (3.17) we get
h 2 h
v / Qw0 g s VI <—8w @> . (3.23)
dy Oy 4 = 9 0Y) iy1/211/2,j41/2

€it1/2,5

Since

ow" (2,y) = W'z, yj41/2) — W' (@,y5-1/2)
Oy Y h

and, analogously, dv/dy is constant in y on e; 1/ j, (3.23) gives the follow-
ing inpact into the left-hand side of algebraic bilinear form:

h h h h
[wz’,jfl/m Wi j+1/20 Wit1 j—1/2» wz’+1,j+1/2]

I//2 —1//2 0 0 1),'7]‘_1/2
—1//2 l//2 0 0 1),'7]‘4_1/2
0 0 v/2 —v/2 Vig1,j—1/2
0 0 —-v/2 v/2 Vig1,j+1/2

(3.24)

We again apply the quadrature formula like (2.12) for the third term of
(3.17) taking into consideration that b € Hy:

1 dwh h?
5 / ba—yde ~ ?bﬂ‘l/l]‘ ((1)2'7]‘,1/2 + 'Uz'7j+1/2)

€it1/2,j

<8wh> ‘o Y )<8wh> )
) i+1,j—1/2 i+1,j+1/2 .
% /i ’ ’ Y )i

(3.25)
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This gives the following impact to the elementary stiffness matrix:

h h h h
[wz’,jfl/m Wi j+1/2> Wit1,5-1/2> wz’+1,j+1/2]

— h h T
—_p, i —=b; ; 0 0

s i+1/2,j ] i+1/2,5 Vi, j—1/2

SVi+1/2,5 glit1/2,j Ui, j

8 8 , , D2 (3.96)
0 0 —glit1/2g —ghiviyg VitLi—1/2

h h Vit1,j4+1/2

0 0 gbz’Jrl/Z,j gbi+l/2,j

The similar formulae are valid for the fourth term (with the change of
w? to v and then the multiplication by —1):

1 Ov h?
_5 / bwha—yd() ~ —gbﬂ_l/lj ((wzh:']fl/z +’IU:L7]+1/Z)
€i+1/2,j
(3.27)
<8v) +(wh . ) ((%)
. —_— . 7,_ +1’ +1 2 h— .
dy ij i LIy Ay i+1,j
The corresponding impact to the elementary stiffness matrix is
[w?,jfl/b wzh,j+1/2v wzh+17j71/2= wzh+1,j+1/2]
S h -
gbi+1/2,j _gbi+l/2,j 0 0 —
h h
glit1/2s ~gliviz 0 0 ij+1)2
A A (3.28)
0 0 ghitijzg —ghivijay | | VT
h h Vit1,j+1/2
I 0 0 glit1/25 ~gbivi/2g |

At last we consider the right-hand side of (3.17). The quadrature for-
mula (2.12) gives

Low+ lfk+1 i~y h? n h? i
T A A VT TR
€it+1/2,j ?

) i+1/241/2, j+1/2

This implies the following impact to the right-hand side of the assembled
algebraic system:
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h? 4 h? 4
—(f“+—a> , —<1’““+—a) :
16 T Jijop 16 T Jij+1)2
h? 4 h? 4
— ( o+ —a> , = < k4 —a> (3.29)
16 T Jit1,j-1/2 16 T Jit1,j+1/2

T
'[Uz‘,j—l/Q; Vi j+1/25 Vid1,j—1/25 Ui+1,j+1/2] .

Combining (3.22), (3.24), (3.26), and (3.28), we obtain the stiffness ma-
trix of the element e; /5 ;:

—%+%bz‘+l/2,j g"'% 0 0
0 0 % + % - gbi-i-l/Q,j
i 0 0 —%+%%wm g+g ]

(3.30)

To study the grid equations further we make its nodal assembly. In order
for an arbitrary value of v; j11/0 to satisfy the equality (3.17), we must
equate its coefficients in the left-hand and right-hand sides. At inner nodes
four elements €;11/5,; €i+1/2,j+1 have nonzero coefficients. Summing these

coeflicients over four elements, equate them in the left-hand and right-hand
sides:

h U
<—u - Z(bz'fl/zj + bz‘+1/2,j)> wzh,j—l/z"' <7 + 2”) wzl'z,j+1/2
(3.31)
h h
4+ —-v+ Z(bi,1/27]‘+1 + bi+l/2,j+1) Wi, j+3/2
h? B g1
= —aijrp + T hjam

i=1,2,...,n—1; j=12...,n—2.
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Taking into consideration that b € H, we get the shorter form

h « h h2 h
-V — Eb” wi7j71/2 + ? +2v wi7j+l/2
h. h? h?
i <_V - Ebml) Wigrsp= G2+ iy (332)

i=1,....n—-1 j=1,....,n—2.

From here on the asterisk * warns that this value of function is a linear
combination of nodal values, for example,

bi; = (bic1y2,5 + bit1)2,5)/2

At the boundary nodes of I'* the assembly is fulfilled over two elements
only:

v h h h? h
<—§ - Zb1/2’j> Wy 172+ <§ + V> Wo j+1/2
v h h 2 h? k+1
+ <—§ + Zb1/2,j+1> Wo,j+3/2 = 5-00,4+1/2 T g fig jr1 /2
v h h3
<—§ - an—l/Q,j> wz,j—1/2 + (E + V> wz,j+1/2
(3.34)

v h . h? R
+ (‘5 + an—1/2,j+1> Wn,j+s/2 = 57 Onjt+1/2 gflﬁ,jﬂ/y

To close the system of linear algebraic equations, first we amplify it by

boundary conditions
w" (i, y;) :gfj"'l, 1=0,1,...,n; j=0,n. (3.35)

To do more laconic the form of these equalities we introduce the grid oper-
ators of the local averaging in x and in y:

us(@) = (ule — h/2) + ula + h/2)/2,
ug(y) = (u(y — h/2) +uly + h/2))/2.
With the help of the designation (3.15) we can write

(3.36)

wh = wg =g on TP (3.37)
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Analogously we get
v=v;=0 on Iy (3.38)

Now consider the stiffness matrix of the elements which are cut by the
boundary I',. Let us take e;;; /o ¢. Taking into consideration the boundary
condition (3.38) and the twice as small domain e;;1/99 N §2 we transform
(3.21) into the approximate equality

2

1 h
- / w'vd ~ 3 Z(whv)i+1/2i1/2,1/2- (3.39)

+
€iy1/2,0MN82

This gives the following impact to the left-hand side of the algebraic bilinear
form: y
h*/8T 0O v;
h h . i,1/2
[wz,l/2= wz+1,1/2] [ 0 h2/87'] |:'Uz'+171/2:| . (3.40)
The quadrature formula (3.23) is transformed to the approximate equal-
ity

h 2 h
v [ e in Y ("J‘i i) (3.41)
dy Oy 8 g dy Oy i+1/241/2,1/441/4
€iy1/2,0M82 ’
This time
8wh wh(xay ) —wh(ac,O)
a—y(x’y) = 1/2/2 on €i+1/2’0 N Q

and, analogously, 0v/0y are constant in y, then (3.41) gives the following
impact into the algebraic bilinear form:

—-v 0
hoh h h v 0 Vi1):
[wito- Wi1/2> Wit1,0 wi+1,1/2] 0 —v ’Uz-:ll/lz/Q:| . (3.42)
0 v

For the third term the corresponding quadrature formula gives the approx-
imate equality

1 ow" h? .
5 / ba—yvd() ~ Ebi+1/2’1/4

€it1/2,0N8$2

. (1)' + v; ) E +(1)' + v; ) E
1,0 i,1/2 3 ) .. i+1,0 i+1,1/2 By i

) )

(3.43)
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This involves the following impact to the algebraic bilinear form:

h .
gbz’+1/271/4 [wf’o, wzh,l/2= wzh+1,07 wf‘+171/2]
-10
1 0 /Ul'71/2
0 -1 [Uz’+1,1/2 . (3.44)
0 1

The similar impact is valid for the fourth term:

h

* h h h h
sz’+1/271/4 [wi,07 Wi 172> Wit1,0 wz’+171/2]

-1 0
-10 Vi,1/2 }

’ . 3.45
0 -1 [%’4—1,1/2 ( )
0 -1

Combining (3.40), (3.42), (3.44), and (3.45) we get

h h h h
[wz’,07 Wi 172> Wit1,0 wi+1,l/2]

h_ . T

(‘Z i+1/2,1/4 — Y 0
2
s " [ Vi /2 } . (3.46)
0 _h_2 : 1/2,1/4 — VY fin
4 i+1/2,
h

L 0 g +v i

Now consider the right-hand side of (3.17). First, the quadrature formula
is transformed to the following:

/ 1av-+—1f'“+1v szZ h—2av+h—2fk+1v
T 471 — \ 87 3271

eiy1/2,0M82

>z’+1/2:|:1/271/2'

Second, due to the boundary condition (3.37) two values wzo and wzh+1,0

are known in (3.46) and their impact has to be rearranged to the right-hand



Completely splitting method for the Navier-Stokes problem 137
side. This implies that

h2 k+1 h * k+1
3, 2i1/2 + f1 i1t Zbi+1/2,1/4 + V) 91,i+1/2,00

h2 ho
g dit11/2 T flkiil 1/2 <sz‘+1/2,1/4 + V) gfjﬁ_l/;o] (3.47)

'[Ui,1/2; Ui+1,1/2]T

appears in the right-hand side and the rest of (3.46) stays in the left-hand

side:
h2
—4+v 0
[w?,1/2: w?+1,1/2] 87 B2 [
0 +v
87

vii /2 } L (34m)
Vit1,1/2

Now assemble the algebraic equations corresponding to v; /2,
i=1,...,n—1, over 4 elements €;11/20 M {2 and e;1;/2;:

3h? h,
<? + 31/) wﬁl/2 + <—V + §bi71> wf’3/2
3h2 h .,
= G +2 ffj} /2 <§bm Jat 21/) 9 tos (3.49)
1= 1,...,n—1.

At the boundary node zg,/> the algebraic equation is assembled over 2
elements €1/2,0 N {2 and €1/2,1"

3n 3 h v h h
g‘f‘ SV | Wo1/0 t+ _§+Zb1/2’1 Wy 3/2

(3.50)
3h2 h * k+1
= 8—7a0’1/2+ f1o1/2 1 1/2,1/4 TV | 9100
The similar equation is valid at the node z,, 1 /o:
3n2 3 v h
( oy +3 > wﬁ,l/z + (‘5 + anl/2,l> wz,:ﬁ/z
(3.51)

3h? k h .
= S—Tan,l/z + f1 211/2 (Z n—1/2,1/4 V) gfj:o.
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Without repetition of assembly we write the algebraic equations on the
upper part of the boundary I'#:

3h2 3 h v h h
& + Wy p—1/2 5~ Zbl/znq (I

3h2 L (3.52)
81 @o,n—1/2 + 39 flk—(i)_,ln—1/2 + <_Z I/?,n—1/4 + V) Q{H(;ln;
3h? h_,
<? + 3”) Wi n—1/2 (‘V - §bi,n1> wz}'tn73/2
3h? h .,
= ?aim—lﬂ flkﬂz 1/2 < 50%n-1/at 2’/) g{”ﬂw (3.53)
i=1,...,n—1;
3h2 3 v h
< 8T +5 > Zn71/2 + <_§ - anl/Z,n1> wz,n73/2
3h2 L (3.54)
gy dnin— 12+ fffn 1/2 <_Zb:¢—1/2,n—1/4 + V) gf—;ln

Let us prove that the obtained system is stable with respect to initial
data and a right-hand side. Since the mass matrix is not constant over nodes
of 2% introduce the weight coefficients

1 ifi=1,...,n—1,
9i= {1/2 if  i=0,n, (3.55)

and
1/4if Jj=0,n,
p;i =14 3/4if j=1/2,n-1/2, (3.56)
1 ifj=3/2,...,n—3/2.
With these weights introduce the norm

n n
w13, =12 00> pisrja(wlyyy o)™ (3.57)
i=0  j=0
Theorem 3. Let the condition
gttt =0 on I} (3.58)

be valid. Then for the system (3.31)—(3.34), (3.49)—(3.54) the a priory
estimate .
w10 < llallo + Z A e (3.59)

holds for any grid function b € H,.
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Proof. Multiply each equation of the system mentioned by wZ /2 with
corresponding 4, j and sum up over i =0,...,n, j =0,...,n— 1. It is easy
to examine that the terms which contain the function b are reciprocally can-
celled. For the terms with the multiplier v we apply the difference analogue
of the formula of integration by parts:

L o n h h Lo n h h
ﬁ(wi,l/2 — Wi3/2) Wit/ + ﬁ(wi7nfl/2 — Wy 52) Wi 12

h2 Z ” 12 T 2“’1 NESY. Zj+3/2)w?,j+1/2 (3.60)

2 Z Wij+1/2 ,J 1/2)2'

As a result of this computations we get the inequality

2 n—1

n _
h h
Z gi Z pj+1/2(w ,J+1/2)2 +v Z(wz‘,j+1/2 - 7”1',3‘—1/2)2
o —
‘ 2 n—1 n 1 J
< - Z gi pj+1/2ai,j+1/2wzh’j+1/2 (3.61)
i=0  j=0

n—1 n—1

V)

h
, ) k+1 h

7 20 > i1 fi G a0
i=0 =0

+

.

In the left-hand side we drop the second positive sum while in the right-hand
side we apply the Cauchy-Bunyakovski inequality:

1 1 1
[, < ~llalluollw” o + ZIF lollw" {0,

If ||w"||1,, = O then the inequality (3.59) is evident. In the other case we
divide both sides by the positive expression ||w”||; ,/7 and get (3.59). O

Now consider the discretization of the problem (3.8) — (3.10). The time
discretization is achieved by means of the substitution (2.1). After rear-
ranging the term known due to (3.10) to the right-hand side we obtain the
parametric family (with the parameter y) of stationary ordinary differential
equations at time level ¢j1:

1 pyy O%M 1 Ouftt 18(adftt) 1 L1

el _ - - S - 0
" gy + 2% oz + 2 Oz . + 4f1 o
(3.62)
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with the boundary condition
uftt = gt on I, (3.63)

For the space discretization we turn to the generalized formulation. To do
it we take an arbitrary function v(z,y) which satisfies the condition

v=0 on I. (3.64)

Multiply the equation (3.62) by v and integrate by parts over {2 with the
help of (3.64). As a result, we obtain

1 k+1 1 k+1
—(uk+1,v)g+y<8u 81}) 41 <a6u ﬂ})
o 2 7}

T or Oz Ox
(3.65)

1 Ov 1 1
g (), = et s Ut o

To approximate this problem, we again employ the space H, introduced
in section 2. As a result, we obtain the following Galerkin problem: find a
function u"(z,y) € H, which satisfies the boundary condition

ul = gttt on It (3.66)

and the integral relation

l(h ) + v @8_1) +1 8_uh
Fuve oz’ 0z ), 2 aaaz’vg
1 L Ov 1

1 (3.67)
1 ovy _ L. h 1kt
2<au ’830)9 T(w ’U)Q_+_4(1 0)a

for an arbitrary function v € H, which satisfies the boundary condition

v=0 on IM (3.68)

It should be noted that in the right-hand side we replace the function w**?
by its approximation w” € H, obtained by solving the problem (3.16)—
(3.18).

We will seek the unknown function »” in the form

n n—1

u(2,y) = DD Ul e/ (T,y). (3.69)

i=0 j=0
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Then the problem (3.67) — (3.69) is equivalent to the system of linear
algebraic equations with respect to the unknowns uf 12 Using the trapez-
ium quadrature formula, by analogy with computations (3.21) — (3.30) we

obtain the following stiffness matrix of the element e; /5 ;:

h 5

h? v . v
RS 0 T 3%kl T g 0
h v h . v
0 E+§ 0 _Zai+%’j+%_§
h . v h? v
Zai+%’j7%—§ 0 E+§ 0
L h v h v
0 1%t1/2,541/2 T 0 T3
(3.70)
i=0,...,n—1; j=1,....,n—1.
The impact of ;11,2 ; into the right-hand side of (3.67) is
h? h?
> ((— LA —wh> v> : (3.71)
i 16 4t i+1/241/2,541/2

With the help of these impacts first we assemble grid equations at inner
nodes z; j1/2. In order for an arbitrary value v; j11 /5 to satisfy the equality
(3.67) we must equate its coeflicients in the left-hand and right-hand sides.
Four elements €11/ j, €;+1/2,j4+1 have nonzero coefficients. Summing these
coeflicients over these elements, equate then:

h " h h? h
TV T 5%z 412 | Wit gy1/2 T 7+2V Yij+1/2

2
h k+1

h?
h _ h
Yit1,j+1/2= = Wijt1/2 + Zfl,m-ﬂ/z, (3.72)

h .
+ <_V+ Eai+1/27j+1/2>
1=1,...,n—-1; j=1,...,n—2.

To close the system of linear algebraic equations along these lines we amplify
it by the boundary conditions (3.66).

Now consider the stiffness matrix of the elements which are cut by the
boundary I';, for example, €;;1/2 9. We use the following quadrature formu-
lae:
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1 h?
- / uvd ~ — Z(Uhv)i+1/211/2,1/411/4; (3.73)
T 81
€iy1/2,0N52 +.+
h 2 h
v / LRI <ai @> . (374
e e Ox Ox 4 - Ox Ox i4+1/2,1/441/4
1 duh
- —uvdf? .
5 / a—m vd (3.75)
€iy1/2,0N52
h? ouh
R 16 ((av);1 /44174 + (aV)i41 1 /241 /4) (8—> )
T T/ it1/2,1/4£1/4
1 n OV
€iy1/2,0M82
N h? ov

R ((auh)'J at1/4 + (auh)'+1,1 441 4) (-) .
16 7 Y LAY O i+1/2,1/441/4

Combine these impacts and write the result in the form of the stiffness ma-
trix:

[“?707 U?J/Qa “?+1707 “?+171/2] (3.77)

i h v v h , 1
s 71 0 T3 g% ’
h? v v h,

}? 3 v 2 0 T4 gi+1/2.1/2
v . v
7 T g%i+1/2,0 0 ) 0
v h, h? v
i 0 —Z+§ai+1/271/2 0 8_T+Z ]

T
'[Ui,o, Vi1/25 Vi+1,0, Uz’+1,1/2] .

The impact of e;11/2,0 N §2 into the right-hand side of (3.67) is

h2 h2
> <<— T+ —wh> v) . (3.78)
++ 32 87 i+1/241/2,1/4+1/4

Now assemble the algebraic equations corresponding to v; 12,
i=1,...,n—1, over 4 elements €;11/20 N {2 and €;41/21:
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v 3h h 3% 3v\
_T_gai—l/Q,l/Q Ui_1,1/2F ?"‘? Uj1/2

v  3h 3h? 3h?
+ <—Z + §0i+1/271/2> U?+1,1/2: 4_wzh,1/2 + ﬁfﬁﬁ/zﬂ (3.79)

-
1=1,...,n—1

And finally we assemble the algebraic equations corresponding to v; g,
i=1,...,n—1, over 2 elements €;11/3,0 N {2

v h, h n? v\ o,

1 gai71/270 Ui 1,07t 47 + B} Ui0
v h , h? h? ..
+ (‘Z + gai+1/2,0> U?+1,0: Ew?,o + Eflj’(l]’ (3.80)
1=1,...,n—1

Similar equations arise near the upper part of the boundary I':

v 3h h
4 ?ai—l/Q,n—1/2 Ui—1,n—1/2
3h?  3v v  3h ,
+ (? + 7) ’U’anl/2+ <_Z + §Gi+1/2,n1/2> “?+17n71/2 (3.81)

= ?wi,n—l/Q + 1_6f1,—1!_,n—1/2’

v h, h h? v\
—7 T g%-1/2m Uiy pt+ E+§ Ui

v h B2 B2
+ <_Z + gai+l/2,n> U?+1,n: wan + Eflkf,l], (3.82)

and

By analogy with the proof of Theorem 3 we obtain the stability of the
system (3.66), (3.72), (3.79) — (3.82) with respect to initial data and a right-
hand side, which we describe without substantiation. For this purpose we
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introduce the norm

n—1 [fn—1

[, = 02D\ D piraja(ulpage)® + polule)® + palul,)? | . (3.83)

i=1 7j=0
Theorem 4. When the condition
gt =0 on It (3.84)

is valid, for the system (3.66), (3.72), (3.79)—(3.82) the a priori estimate
T
"l < Nl lle + 1A (3.85)

holds for any grid function a € H,. O

3.2 Splitting and discretization of the equation for the second
component of velocity

Now we consider the problem (1.9) — (1.11) for the second component of
velocity:

ov 1 1. 1

a—: —vAvy + E(u; -V)ve + Edw(vgu;) = §f2

in 2 x (tkatk+1)a (386)
vy =go on I X (tg,trr1), (3.87)
1)2(.’1’,’,:1],151;) = ug,k(m:y) in £ (388)

Realize the further splitting of this fractional step in z- and y-directions:

ou  0%u N 1 du  19(am) 1

o Vo T2 T2 or AP
in 2 x (tk,tk+1), (389)
u=go on Iy x (tk tit1), (3.90)
u(w,y,tr) = b(z,y) on (3.91)
and
@_y@_Fl @+1_8(bu‘)) —lf
ot oy 2 0y 2 oy 477
in 02 x (s tptal, (3.92)
=gy on IyX(tg,trs1), (3.93)

w(z,y,tk) = U(z,y,tkr1) on L. (3.94)
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After solving both problems we get

UQ(may:t/HJ) = ﬂ_)(.’L',y,thrl) on (2. (395)

The equations (3.89) and (3.92) are identical to the equations (3.8) and
(3.6) respectively, while the problems differ only in right-hand side. There-
fore we do not repeat detailed computations for the discretization of two
new problems and derive the final grid formulation. The difference in the
discretization of new problems consists in the use of different (geometrically
shifted) subspaces for u and 4, w and @. From the geometric point of view
the problems (3.6)—(3.7) and (3.89)—(3.91) are more contiguous within the
change of y to x,b to a, which we just used.

First we write the Galerkin problem for the problem (3.89)—(3.91): find
a function " (x,y) € H, which satisfies the boundary condition

ah =gttt on  Th (3.96)

and the integral relation
1(ﬂh v)g+v ou’ dv +1 a@ v
A oz’ dz), 2\ 0z’ ),

1/ , Ov 1 1 k1
5 (au ’833)9_ 7_(11,1))9-4—4:( 5T, 0)0

(3.97)

for an arbitrary function v € Hy, which satisfies the boundary condition

v=0 on I} (3.98)

We will seek the unknown function @”" in the form

u"(z,y) = Z Za?+1/2,j<py7i+1/27j(xay)- (3.99)

i=—1j=0
The problem (3.96)—(3.98) is equivalent to the system of linear algebraic

equations with respect to unknowns @/, | J2.j°

h * —h h? —h
V= 50 ) Uiyt | 2 Uiy

h * —h h? h? k+1
TV F 5%, ) Wivsyay = 7bi+1/21j+Zf2,z‘+1/2,j’ (3.100)
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At the boundary nodes of F?f the assembly is fulfilled over 2 elements only:
v _ h? _
(_5%1/2) “?—1/2,0 + <§ + V) “7+1/2,0 (3.101)
v h _ h? h?
+ <—§ + Zai+l71/2> U?+3/2,0 = szﬁrl/lo + §f2k7ﬁ1/2707
v h o h? h
T5 T q%n-1/2 | Uinape g T 5 TV ) Uirijan
(3.102)
v h _ h?
+ <—§ + ZaiJanl/Z) U?+3/27n = 57 %i+1/2.n + fkﬁl/;n,

Near the boundary I'* the algebraic equations are somewhat modified due
to twice as small elements eq ;11,5 N §2 (instead of eg jy1/2):

3h2 i h o\ _
(? + 3V> ui‘/z’j + (—1/ + §a1’j> ué‘/z’j

h *
= b+ fff/g ; <§a1 Jajt 21/) g5t (3.103)

Note again that a € H, and its values at intermediate points are the corre-
sponding linear combinations of nodal values. For example,

1j = (a1 jo1y2 + a1 j41/2) /2,
i/ ji1/2 = (30,1172 + a1 jy1/2)/4, (3.104)
ai‘/4’j = (30,07]',1/2 + al,jfl/Z + 3a07]-+1/2 + a17j+1/2)/8-

At the boundary nodes z; /5 9 and 2y /5, we get
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3n2 3\ _ v h _
( 87’ + = > U?/z,o + <_§ + Za1’1/2> U§/270 (3105)
3h? h . 1
= ybl/ﬂ f2kJ1r/120 <Za1/4,1/2 +V> géj(;,lo;
3n2 3\ _ v h _
(8_7' + l/> “?/2,71 + <_§ + Zal’n_1/2> ug/2,n (3106)
3h? h
= S—Tbl/ln f2kJ1r/12 n <Za1/4,n—1/2 + V) ggtln
Similar equations are valid at the nodes z,,_1 /2.0, z2n-1; forj=1,...,n—1,
and Zn71/27n:
3h% 3\ _ v h _
<§ + V) “2—1/2,0 + <_§ - Zan—1,1/2> Uﬁ_g/m (3.107)
3h? k+1

h .,
= S—Tbnfl/ZO + f2 n—1/2,0 <_Zanl/4,l/2 + V) 95;}@
3h2 h . _n
? + 3v Uy 1/2,j + | —v— §an_17j un—S/?,j (3108)

3n* k+1 h ., E+1
= ?bn—l/%] f2n 1/2,j < 5 n— 1/4J+2V> 921,55

3n? 3 v h
<_+ V> iy 1/27n+ (‘5 70n—1.n— 1/2) ap 3/2.n (3.109)

8t
3h? h .
= S—Tbnfl/ln ffﬁl 1/2,n <_Zanl/4,n1/2 + V) ggtlln

With the help of the notations (3.55), (3.56) introduce the norm
n— n
||’U’h||§,a' = h2 Zpi+1/220j(ﬂ?+1/27j)2. (3110)
i=0 7j=0
Theorem 5. Let the condition

gt =0 on I (3.111)
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be valid. Then for the system (3.100)—(3.103), (3.105)—(3.109) the a priory
estimate

-
2.0 < llbllo.o + 71157 ll2o (3.112)
holds for any grid function a € H,. O

Finally, consider the last problem (3.92)—(3.94). It is contiguous to the
problem (3.8)—(3.10) within the change of = to y, a to b. The Galerkin
problem for implicit discretization in time looks as follows: find a function
ol (z,y) € H, which satisfies the boundary condition

wh =gs™ on I} (3.113)

and the integral relation

for an arbitrary function v € H, which satisfies the boundary condition
v=0 on IM (3.115)

Note, that in the right-hand side we replace the function u by its approx-
imation #" € H, obtained by solving the problem (3.99)-(3.103), (3.105)—
(3.109). We will seek the unknown function @" in the form

n—1 n

u—}h(%y) = Z Zw?+1/2,j90y,i+1/2,j (z,9)- (3.116)

i=0 j=0

The problem (3.113)—(3.115) is equivalent to the system of linear algebraic

equations with respect to unknowns “_’zh+1/2 I

h, _ h? _
<—1/ - §bi+1/2,j_1/2> w'?+1/2,j—1 + <7 + 2") w?+1/21j
2 (3.117)

hb* —h _ —h
+|—v+ 9 i+1/2,5+1/2 Wit1/2,5+1 = 7ui+1/2,j +

2
h_fk+1
4 J2i+1/2,5
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v 3h_, _n 3n2  3v _h
7 §b1/27]‘71/2 Wyypj-1F A + o ) Wi/2

v 3h 3h2 3h* 1
. _h _ _h k+1 .
v h _ h2 14 _
<_Z - gbO,j—1/2> wg,j—l + (E + 5) wg’j
- g ; (3.119)
+ <_Z + gbo,j+1/2> B0 1 = Eﬂg’j + 1_6]‘%’1”';
v 3h , _h 3h° 3 on
R VYRV LRV &k LV
(3.120)

v 3h, ) 32, 3h? .,
+ (‘Z + ?bn—l/Q,j+1/2) Wn-1/2,j41 = 3= Un—1/2,j + 1_6f2;—1/2,j;

v h h R v\
<_Z - gbn,j—1/2> Wy i1 T (E + 5) W,

2 2
—h h k+1 .

, i (3.121)
v —h
! (‘z ’ gbw“/z) i1 = g7 ¥ g fans

j=1...,n—1
The stability of this system is substantiated in the norm

n—1 /n—1
||U7||§7p =h? Z (Z Pz‘+1/2(w?+1/27j)2 + Po(ﬂ_)g,j)2 + pn(wn7j)2)' (3.122)

j=1 \1i=0
Theorem 6. When the condition
g5 =0 on IV (3.123)
is valid, for the system (3.113), (3.117)—(3.121) the a priori estimate

_ _ T
102, < @™, + Z||f2’“+1||2,p (3.124)

holds for any b € H,. O

3.3 Integration with the help of small fictitious domains for
uniformity of equations

To realize the approach with small fictitious domains we first consider ex-
tended domain {4 = (0, 1) x (—h/2, 1+ h/2) and prolong the equation
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(3.6) by smooth way into additional strips (21 \ {2 through boundary I,
using Taylor expansions of functions in left-hand side of (3.6). Recompute
right-hand side of (3.6) with the help of extended functions in fictitious
domains, we get equation (3.11) to be valid in extended domain (2;.

With these extensions we obtain the following Galerkin formulation in-

stead of (3.17): find w" € H, which satisfies the boundary condition
wly =gt i=0,....n, j=0,n, (3.125)

and the integral relation

1(whv) +v 8—wh dv +1 bEv
o oy O0y)g 2\ 9y’ g

1 n OV 1 1 e
-3 (o 6_y>9 = 7@va+3 (),

(3.126)

for an arbitrary function v € H, which satisfies the boundary condition
0i; =0, i=0,....n, j=0,n (3.127)

Repeating considerations (3.21)—(3.30) on the extended domain 2, we
get the same elemental stiffness matrix even for elements which are cut by
boundary I',. Take for example element e;; /s ¢ and its stiffness matrix

h h h h
[wz‘771/27 Wi 1/2> Wit1,—1/2s wz‘+171/2]

( g + g —g - %bz’+1/270 0 0 |
—% - %bi+1/2,0 % + % 0 0
0 0 Z + g —% - %bi+l/2,0

'[Ui,fl/b Vi1725 Vid1,-1/25 Uz‘+171/2]T-
But this time values v; 41,5 and v;y; 412 are not independent because of
(3.127) that involves

Vi,—1/2 = —Vi,1/2 and Vit+1,—-1/2 = —Vit+1,1/2-

These equalities transform elemental matrix:

h h h h
[“%',—1/2: Wi1y2: Wip1,-1/2; wi+1,1/2]
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h? h
(_E_V_szﬂrl/zo 0
h2
I +v— Zbi+1/2,0 |"W,1/2 ]
h? h 4 )
0 vV sz‘+1/2,o Vit1,1/2
h? h
L 0 E +v— sz’+1/270 ]

One can see that implementation of this elemental matrix will give equa-
tions for z; 1 /5 and z;41,1/2 which are not uniform with other z; ;1 inside
domain.

The situation is not better if we use equality from (3.125) to exclude
fictitious values

k41

h _ h h _ h k+1
Wi 179 = ~Wi1/2t+ 29150 and Wiy1,—1/2 = ~Wiy11/2 + 291 it1,0-

Indeed elemental matrix becames simpler,

i 2 0
— + 2v V:
[l o wlnpd |27, [ o ] ,

0 ~ 49 Vit1,1/2

27
with corresponding addition into the right-hand side. But again it disturbs
the uniformity of equations.

Thus, the approach with small fictitious domains does not give in this
situation uniformity of algebraic equations near the boundary I, and be-
comes usefulness in this subproblem for practical use.

But another idea is fruitful for approach with integration over (2. Under
detail consideration we can see that unknowns wz it1/2 at boundary I,
can be omitted in further algorithmic considerations by use of boundary
conditions, for example,

Qi j+1/2 = gfi,j+1/2a b;,j = gg,i,ja etc (3.128)
at the boundary nodes. It allows us to solve system of equations (3.32),
(3.49), (3.53) and exclude 6 different types of equations (3.33), (3.34),
(3.50)—(3.52), (3.54). System of algebraic equations becomes more uniform
and we shall use this simplification in our numerical experiment.

Another situation is in the subproblem (3.4)—(3.10). Take extended do-
main (2; and prolong the equation (3.8) by smooth way into additional
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strips {24 \ 2 through boundary I, using Taylor expansions of functions in
left-hand side of (3.8). Recompute right-hand side of (3.8) with the help of
extended functions in fictitious domains, we get equation (3.63) to be valid
in extended domain (2;. Similarly by Taylor expansions we prolong bound-
ary functions ¢¥ ™ on 4 segments {0, 1} x (—=h/2,0) and {0,1} x (1,1+h/2).
It gives the boundary condition

u=gF! on extended segments {0,1} x (—h/2,1+h/2).  (3.129)

With these extensions we obtain the following Galerkin formulation in-
stead of (3.68): find u" € H, which satisfies the boundary condition

h k+1 . .
w1y :glj‘,j+1/2’ i=0,n, j=-1,...,n (3.130)

and the integral relation

1( h ) + v @ 6_’[) +1 8_uh
Tt oz’ Oz 0, 2 “or 2
AR TA NS VRS e

2 (au ’8x>91 =2 v)e + 7 (A7 v)g,

for an arbitrary function v € Hy, which satisfies the boundary condition

(3.131)

'Uz'7j+1/2 :0, ) :0,71, ] = —1,...,77,. (3132)

Repeating considerations like (3.70)—(3.85) on extended domain 2, we
get the same equations like (3.72) for j = 0,...,n—1 and some equations for
7 = —1 and j = n. Last equations later does not influence on approximate

solution and we shall omit them in out further algorithmic considerations.
Thus, we have the system of algebraic equations

h " h h? h
V= g%z | Wit T T v | Uity

h % h h2 h h2 k+1
+ <—V + §az’+1/27j+1/2> Uirg2= TWigraje T fii e (3:133)

i=1,....n—=1; j=0,...,n—1.
To close the system we add the boundary conditions
uf’jﬂﬂzgfj’;ﬂ/y i=0,n, j=0,...,n—1. (3.134)

By usual way we demonstrated before it is proved that obtained system
is stable upon the initial data and right-hand side in norm || - |1 5.
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So, for subproblem (3.8)-(3.10) the approach with small fictitious do-
mains produces uniform system of algebraic equations that is useful for
coding and will be used in our numerical experiments.

Situation with subproblem (3.89)—(3.91) is the same like in (3.6)—(3.7),
i.e., approach with small fictitious domains does not give more uniform
equations. But second idea is fruitful when unknowns and equations at
boundary nodes z;11/2,0 and zjy1/2, are omitted. As a result we get the
system of algebraic equations (3.100), (3.103), (3.108). This trick allows to
exclude 6 more types of equations (3.101), (3.102), (3.105)—(3.107), (3.109)
and makes simpler coding. Again we shall use this idea in our numerical
experiments.

And vica versa situation with subproblem (3.92)—(3.94) is similar to
subproblem (3.8)—(3.10). Therefore take extended domain 25 = (=h/2, 1+
h/2) x (0, 1) and prolong equation (3.92) into additional strips 25 \ 2
through I', by Taylor expansions of functions in its left-hand side. Recom-
pute right-hand side of (3.92) with the help of extended functions into ficti-
tious domain and get (3.92) to be valid on extended domain (2. Similarly
by Taylor expansions we prolong boundary function gé““ on four segments
(—=h/2,0) x {0,1} and (1,14 h/2) x {0,1}. It gives the boundary condition

@ = ght! on extended segments (—h/2,1+h/2) x {0,1}.  (3.135)

With these extensions we obtain the following Galerkin formulation in-
stead of (3.113)—(3.115): find w" € H, which satisfies the boundary condi-
tion

wi; =g5th, i=0,n,j=0,...,n, (3.136)

and the integral relation

l(u—)hv) +v a_u_}h % _+_1 @1}
o Oy’ Oy 0 2 Oy’ 2

for an arbitrary function v € H, which satisfies the boundary condition
vi; =0, i=0,n, j=0,...,n (3.138)

Considerations like (3.70)—(3.82) on extended domain {2, give the same
equations like (3.133) for w i=0,...,n—1, and some equations for

_h —
Wy ) ; and w

h
i+1/2,57

h . . .
n1/2,5" Last equations later does not influence on approxi-
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mate solution and we shall omit them in our further algorithmic considera-
tions. Thus, we have the system of algebraic equations

h_ . h h2
-V = §bi+1/2,j—1/2 Wiy1o51 T | —+ v z+1/2]

h —h h? R i
+ < v+ bz+1/27]+1/2> Wit1/2,54017 T Uit1/2,5 + ngj_,_l/gm (3.139)
1=0,....,n—1; j=1,...,n—1,
with boundary condition

Wiy = g;ﬁlm, i=0,...,n—1, j=0,n. (3.140)

By usual way we demonstrated before, it is proved that obtained system
is stable upon the initial data and right-hand side in norm || - ||2,5.

Thus, for the subproblem (3.92)—(3.94) the approach with small fictitious
domains produces the uniform system of linear algebraic equations that is
useful for coding and will be used in our numerical experiments.

Numerical experiments with selected approach give negative and positive
experience which we discuss in the end of paper. We shall come to some
recommendations which we shall follow in our further work. In spite of
official completion of joint project the laied scientific cooperation and series
of theoretical ellaborations will be realized in the form of joint preprints,
programs, and papers. So that recommendations of this paper and their
realizations will be theoretically and numerically justified and successively
published in joint preprints.

4 Numerical experiment

For numerical experiment we take the problem (1.1)—(1.4) with the param-
eters v = 0.01, 7' =1, and the following data:

B o on 2% (0,7)
g1(z,y,t) = — cos(mz) sin(my) exp(— 27r ut), .
0o(z,0.8) =  sin(rz) cos(my) exp(—2avt), O L% (0,T);
uo,1(z,y) = — cos(mz) sin(my),

uo,2(z,y) = sin(nz) cos(my). on 2.
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The solution of this problem is

up(x,y,t) = — cos(mz) sin(my) exp(—272vt),
us(w,y,t) = sin(mwx) cos(my) exp(—272vt),
plz,y,t) =—0.25 (cos(27mc) + cos(27ry)) exp(—4r?vt),

on 2 x [0,T]. The graphs of these functions are presented on Fig. 7, 9, 11,
at time ¢ = 1. We solve the discrete problem using small fictitious domain
approach from 3.3 to simplify a coding.

First we consider the error for pressure. The Fig. 15 demonstrates that
the order of convergence is 77/2 + h? in discrete Lo-norm. On Fig. 12 we
see the artificial numerical boundary layer specially in corners, which is
usual for splitting. Its origin comes from incorrect boundary conditions for
pressure of Neumann type. For example, at the point (z,0) € I" from initial
equation (1.7) we have

1 1
6p =fo— % + vAuy — 5( - Vuy — Ediv(uQu).

And on the fractional step of pressure work we get on the base of (1.12)
and previous considerations that for splitting problem we have an equality
equivalent to

So you see that we have the error of order O(1) in boundary condition.
It is a good luck that this discrepancy produces the error in pressure only
in narrow boundary layer, which gives small error in Ls-norm and in its
discrete analogue.

Fig. 13, 14 demonstrate the order of convergence 7+ h? for both compo-
nents of velocities in discrete Ls-norm. The error for velocities also has an
artificial numerical boundary layers that is demonstrated by Fig. 8, 10. Here
origin of artificial boundary layers comes from splitting into geometrical di-
rections and is produced by unsimultaneous use of boundary conditions. For
example, in problem (3.6)—(3.7) for u; we first use boundary condition like
u1 = g1 on Iy X [tg, tg41]. It means that u; on fractional step in y-direction
in general does not satisfy boundary condition u; = g1 on Iy X[tg, tg41] with
discrepancy of order 7. Therefore on the next fractional step in k-direction
(equations (3.8)—(3.10)) we have

tim 2% (z,4) = 2

1
lim (0,5) +0(1).

ot
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Again it produces approximation error of order O(1) in thin vicinity of I},
that results in artificial boundary layer of amplitude O(r).

Analogously we get thin artificial boundary layer for uy in the vicinity of
I'y. Of course, these boundary layers with small amplitude give the accuracy
corresponding truncation error. But they do not give to use Richardson
extrapolation for increase of accuracy order because of irregular character
of approximate solution error.

5 Conclusions

5.1 Splitting method vs. solution with complete operator

An important advantage of splitting method is reduction of problem with
complete operator into several simpler problems on each time step: Poisson-
like problem for pressure and four families of one-dimensional problems (in
view of discretization in time). Operator of Poisson-like problem is sym-
metric and positive-definite, has constant coefficients. It allows to use many
effective algorithms to solve the problem. It results in algebraic complexity
with number N of arithmetical operations, where N ~ cn? is number of
unknowns.

The main disadvantage of splitting method consists of artificial boundary
layers produced by inaccurate boundary conditions. As it was written yet,
they have comparatively small amplitude but have irregular character and
do not give to increase the accuracy by Richardson extrapolation. Of course,
there are several papers (for example, see [16], [24] and references in it) in
which amplitude of artificial boundary layers is somewhat reduced because
of more accurate work with boundary conditions. Another ways to get the
second order of convergence in time consist of Crank-Nicholson approach
and @-scheme [12], [8], [13].

But in principle, Richardson extrapolation for regular truncation error
and stable scheme allows any finite order of convergence, for example, third
and fourth. Such a regular truncation error is given by full implicit scheme.

Therefore on next stage of our joint work we shall use full implicit scheme
to ensure an increase of convergence order at least in 7.

5.2 Staggerred meshes vs. united mesh

The main advantage of staggerred meshes consists of automatic fulfilment of
LBB-condition for pressure stability [2]. But last years the other approach is
popular enough: filtering the spurious modes. The main idea is to implement
united square mesh and bilinear finite element for velocities and piecewise
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constant for pressure. This scheme becomes stable with orthogonalization of
approximate solution to local spurious modes [1], [2], [14]. In principle, this
orthogonalization reduces the number of degrees of freedom for pressure
from n? to 3/4 n? in 2D-problem. For 3D-problem this loss is even less:
7/8 n? instead of n® [14]. Algebraic complexity due to orthogonalization
increases by 2n? arithmetical operations only.

But advantage of united mesh is evident. The coding for united mesh is
simpler even in 2D-problem. In the vicinity of curvilinear boundary this rea-
son becomes crucial since staggerred meshes come to multiciphered approx-
imations of domain that is problematic from both theoretical and practical
points of view.

Therefore on the next stage of our joint work we shall use united mesh
with filtering of local spurious model instead of staggerred meshes.

5.3 Square vs. triangle mesh

It looks that square mesh is more appropriate for our problem. First, in 2D
domain the number of squares is twice less than the number of triangles. For
3D domain this ratio is usually between 5 and 6. It produces the greater job
with simplex elements. Then, the quadrature formulae are simpler for square
than for triangle that is more considerable in 3D elements. But triangles
give the better possibilities to approximate a curvilinear boundary.

Therefore we shall use at next stage the combination of square mesh in
the domain with triangle elements in the thin vicinity of curvilinear bound-
ary. Of course, in the situation with condenced meshes in adaptive approach
we get some ”"nonconforming approach” from the elemental point of view.
But from nodal point of view this approach with dividing square in m? equal
squares is conforming and has no difficulties in theoretical justification and
practical assembling.

We shall not accumulate further results in the form of (third) volume
as it was in two previous cases. To accelerate exchange of results we shall
publish our materials in form or preprints and papers as far as they will
appear.
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Fig. 8. Errors for the first component of velocity.
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Fig. 10. Errors for the second component of velocity.
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Fig. 13. The dependence of maximal on ¢ € [0, 1] L2(2)—norm
of u—error on h, .

Fig. 14. The dependence of maximal on ¢ € [0, 1] L2(£2)—norm
of v—error on h, T.
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Fig. 15. The dependence of maximal on ¢ € [0, 1] L2(£2)—norm
of pressure errors on h, 7.
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