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Preface

This book in two volumes includes the results obtained in the framework of

the Project I/72342 ‘Accurate Numerical Solution of Convection-Diffusion

Problems’ of Volkswagen Foundation. The work in accordance with the

project started in the end of 1997 and finished in the beginning of 2001.
The final list of russian team includes 7 participants:

V.V.Shaidurov - professor, doktor of physical and mathematical sciences,
director of Institute of Computational Modelling of Russian Academy
of Sciences; head of Chair on Softwear of Krasnoyarsk State Technical
University;

I.V.Kireev - kandidat of physical and mathematical sciences, scientific
worker of Institute of Computational Modelling of Russian Academy
of Sciences;

E.G.Bykova - kandidat of physical and mathematical sciences, dozent of
Krasnoyarsk State Technical University;

L.V.Gilyova - kandidat of physical and mathematical sciences, scientific
worker of Institute of Computational Modelling of Russian Academy of
Sciences;

E.D.Karepova - kandidat of physical and mathematical sciences, scientific
worker of Institute of Computational Modelling of Russian Academy of
Sciences;

S.F.Pyataev - diplom. mathematician, scientific worker of Institute of Com-
putational Modelling of Russian Academy of Sciences;

T.V.Kalpush - post-graduate student of Institute of Computational Mod-
elling of Russian Academy of Sciences.

During this period new results were obtained in the following directions:

- increasing accuracy of finite-element schemes for convection-diffusion
equations;

- adaptive triangulations in finite-elements and finite-difference methods;

- increasing accuracy and multigrid (cascadic) algorithms for second-order
elliptic equations;

- numerical algoritms for time-dependent Navier-Stokes equations.

These results were reported at 7 international congresses and confer-
ences:

- Numerical Methods for Singular Perturbations. Oberwolfach, April, 1998;
- International Congress of Mathematicians. Berlin, August, 1998;



- International Workshop on the Analytical and Computational Methods
for Convection-Dominated and Singular Perturbed Problems. Lozenets,
Bulgaria, August, 1998;

- International GAMM-Workshop on Multigrid Methods. Bonn, October,
1998;

- International Conference on Numerical Methods for Transport-Dominated
and Related Problems. Schloss Wendgrdben, Germany, September, 1999;

- Sixth European Multigrid Conference. Gent, Belgium, October, 1999;

- Numerical Methods for Singular Perturbation Problems. Oberwolfach,
April, 2001.

Several talks and communications were made at 3 russian congresses and
conference with foreing participants:

- Third Siberian Congress on Applied and Industrial Mathematics. Novosi-
birsk, Russia, June, 1998;

- Mathematical Models and the Methods of Their Investigation. Krasno-
yarsk, Russia, August, 1999;

- Fourth Siberian Congress on Applied and Industrial Mathematics. Novosi-
birsk, Russia, June, 2000.

3 young specialists (E.G.Bykova, E.D.Karepova, T.V.Kalpush) made
several communications at 5 regional conferences for young scientists.

During this period 9 visits of the russian participants to Germany have
been conducted including joint scientific work at

- Erlangen-Nurnberg Friedrich-Alexander University,

- Heidelberg Ruprecht-Karls University,

- Augsburg University,

- Magdeburg Otto-von-Guericke University,

- Dresden Technological University,

- Leipzig Max-Planck Institute for Mathematics in the Sciences,
- Oberwolfach Mathematical Institute.

Two business trips of two german participants to Russia have been con-
ducted including participation in congress at Novosibirsk and joint scien-
tific work in Institute of Computational Modelling of Russian Academy of
Sciences in Krasnoyarsk.

Owing to financial support for russian participants, icluding participa-
tion in international conferences, and owing to computer up-grade, all rus-
sian members had successful progress in scientific level:

- LV Kireev defended kandidat thesis [30] in 1997;

- E.G.Bykova defended kandidat thesis [3] in 1998;

- L.V.Gilyova defended kandidat thesis [15] in 2000;

- E.D.Karepova defended kandidat thesis [29] in 2000;



- S.F.Pyataev prepaired kandidat thesis and will defend it in 2001;

- T.V.Kalpush will finish post-graduate course in 2001, will represent the-
sis, and will defend it in 2001 or 2002.

The most part of the results of this Project was published (see for [1]-
[36]). Concerning well-known journals ([34]-[36]), we do not repeat papers
from them in present report. Other journals and books, especially in Rus-
sian, are not so widely known, therefore we translate the paper from them
to English, if necessary, and brought in this report. Some results presented
here are only submitted in journals and are publushed here for the first
time.

The first volume of this book is devoted to the results concerning the
method of approximation of the convection-diffusion equations with convec-
tion dominated and the method of increasing accuracy for the second-order
self-adjoint elliptic equations. The second volume deals with the multigrid
iterative methods for solving the finite-element analogues of the second-
order self-adjoint equations and the finite element method for solving the
Navier-Stokes time-dependent equations.

In the first part of the present volume new results are presented which are
related to the method of fitting and adaptation of grids for approximation of
the convection-diffusion equations. The method of fitting for the coefficients
of the finite-element grid problem is similar to the difference method of
fitting for approximation of the solutions of the boundary layer type. Three
different techniques of the adaptation of grids are realized on the basis of a
priori or a posteriori estimates of solution derivatives.

In the second part of this volume new results cocerning the nonhomoge-
neous difference schemes of increased accuracy are presented for the second-
order elliptic equations. Besides, using the solution of the Poisson equation
as an example, the well-known difference and finite element schemes of the
fourth order of accuracy are compared in efficiency.

Russian participations of Project are very grateful to Volkswagen Foun-
dation for the financial support. We tried to use it for most scientific bene-
fit. Many scientists helped us in Russia and Germany, but we would like to
thank Prof. L.Tobiska for active participation in joint work, Prof. R.Ran-
nacher for initialization of this work and discussions, and Prof. H.-G.Roos
for fruitful discussions. Coordinator of Project, Prof. U.Riide and his team
made many things for effective scientific work. We are very thankful them,
but the special thanks to Prof. U.R{ide for his great organizing and scientific
work.
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The finite element method
for convection-diffusion convection-dominated
problems

Karepova E.D., Shaidurov V.V.

Introduction

The work is devoted to numerical methods for solving singularly perturbed
problems for the convection-diffusion equation with the highest derivatives
multiplied by a small parameter. In this case the order of the non-perturbed
(singular) equation is one less than of the original (perturbed) equation.
Therefore the boundary conditions of the perturbed problem are not all
fulfilled for the singular one. Some of these conditions are superfluous that
leads to the fast variation of the solution in a small vicinity of corresponding
parts of a boundary. As a result, the standard finite difference and finite
element methods on a uniform grid either are unstable or give poor accuracy
for a small parameter of diffusion.

Some data on the asymptotic analysis of the influence of a small param-
eters in differential equations go back to L.Euler. The modern theoretical
and practical investigations have their origin in A.N.Tikhonov’s works of
1940s ([49], [50], [61]). The systematic development of methods for solving
singularly perturbed problems started in the late 1960s.

In studies of the properties of a differential problem, the methods of the
asymptotic expansion with respect to a small parameter were applied (see
[14], [33], [16], [43], [17], [38], [42], [44], [88], [18] and the reviews in them)
such as the method of the inner and outer expansions ([14] — 1967), the
method of M.I.Vishik and L.A.Lusternick ([19] — 1952 and also [45], [19],
[53]), and the method of boundary functions being the generalization of the
latter one ([15] and [16] - 1960s, and also [11], [17], [13], [18]).
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The use of the standard finite difference and finite element methods for
solving singularly perturbed problems failed because of poor accuracy and
ingtability of the discrete analogues. Detailed investigations in this field can
be found in [110], [74], [102], [63], [23], [4], as well as in the monograph
[118] where the present state of numerical methods for solving singularly
perturbed problems is covered in considerable detail.

For the problems considered here the constants in the estimates of the
convergence of the classical methods, as a rule, depend on a small parameter
and increase indefinitely when the parameter approaches zero [4]. Therefore,
these methods can not be applied as mentioned above.

There are several approaches to overcome these difficulties. By conven-
tion they can be divided into two groups. The first group is made up of
various fitted methods in which the coefficients of a difference scheme in
the finite difference method or the parameters of a bilinear form and basis
functions in the finite element method are chosen with the use of a-priori in-
formation on the behavior of the solution of a differential problem (see, e.g.,
[23]). The second group consists of standard methods on non-uniform grids
which are a-priori given or a-posteriori adapted in the process of numerical
integration (see, e.g., [5], [58], [37]).

The first attempts to achieve higher-order accuracy are connected with
the use of the upwind scheme. The basic idea of this method is to apply an
appropriate approximation of the convective term (by the directed differ-
ences) and to add artificial viscosity along the streamline direction. It has
been proved that this approach leads to the second order convergence for
moderate values of the diffusion parameter and to the convergence of only
the first order when the value of the parameter is comparable with or less
than a mesh size ([103], [128], [125], [59], [70]).

The construction of the methods uniformly convergent with respect to a
small parameter is of great importance in numerically solving the problems
with a boundary layer. The exponentially fitted methods satisfy this prop-
erty. They are constructed using the information on a form of the boundary
layer component of a solution ([25], [26], [24], [60], [79], [80], [81]). Another
way to construct uniformly convergent difference schemes is to use the an-
alytical solution of an equation with constant coefficients. This approach
proposed by D.N.Allen and R.V.Southwell [60] is based on the proximity
of the original problem to the approximating one with piecewise constant
coefficients and gives a discrete problem similar to the exponentially fitted
scheme of A.M.Il’in [25]. In the context of this approach, mention should
be made of the method of integral identities with special weight functions
[39]. This method is constructed in much the same way as the truncated
difference schemes of A.A.Samarskii [46].
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One more way to achieve higher-order accuracy of the finite difference
method outside a boundary layer is connected with increasing the number
of nodes in a stencil ([22], [83], [106]). This complicates the stability analysis
as well as the two- and three-dimensional generalizations.

As we noted above, the alternative way to construct uniformly conver-
gent methods is to use special grids. First of all, these are the grids proposed
by N.S.Bakhvalov [5]. They are logarithmically refined inside the boundary
layer. The construction of these grids is based on the estimates of the deriva-
tives of a solution or on the fact that the difference of the values of a solution
at any two neighboring nodes of a grid is uniformly bounded with respect to
the parameter ([36], [37]). As a rule, this way leads to a nonlinear algebraic
equation for some parameters of this function. Therefore various explicit
approximations of logarithmic function are used to construct the Bakhvalov
grids ((130], [131], [132], [6], [7], [86], [87]).

In [55] and [124] G.I.Shishkin proved that for the problems with a
parabolic boundary layer it is impossible to construct a fitted difference
scheme with a compact stencil that converges uniformly with respect to
a small parameter. Besides, in [55] the nonuniform grid with a piecewise
constant mesh size decreasing in a boundary layer was proposed. In this
case the upwind scheme is convergent with order N~!'In N where N is the
number of nodes of the grid. For singularly perturbed problems, the general
concept of the proof of the uniform convergence of the classical difference
schemes on these grids is presented in the monograph [58] by G.I.Shishkin.
In [56], [57], [90], [91], [92], [82] this approach is applied to a wide range
of singularly perturbed problems in the finite difference framework and in
[114], [120], [126], [112] the Shishkin grids are discussed in the context of
finite element method.

All these approaches applied to the finite element method together with
the specific finite element techniques give a number of tools for numerical
solving singularly perturbed problems.

The upwind scheme in the finite element method has several modifica-
tions. For example, in the Petrov-Galerkin method [63] the standard piece-
wise linear trial functions but the piecewise quadratic test functions are
used ([75], [93], [94], [95]). K.Morton proposed to construct test functions
which yield a simmetric (or nearly simmetric) discrete problem because in
this case the Ritz-Galerkin technique is optimal with respect to the energy
norm [102]. For one-dimensional problems this method works well but it is
difficult to generalize it to higher-dimensional problems ([109], [110], [111]).
Mention should be made of the method proposed by M.Tabata in [127]
where the convective term is approximated on the upwind elements only

([72], [61], [62]).
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T.Hughes and A.Brooks proposed the method using additional viscos-
ity in the streamline direction ([73], [96]). Instead of the standard bilinear
form in the Petrov-Galerkin method they considered some its approximation
with an additional term introducing additional viscosity in the streamline
direction. As a result, the pointwise convergence of the second order can be
achieved on the grids oriented in the streamline direction ([108], [99], [100],
[101], [61], [133], [134], [135]). This approach is equivalent to the use of the
Galerkin method on the special space being the orthogonal product of the
space of piecewise linear functions and that of ”bubble functions” [71].

We also mention the method of the additive selection of boundary layer
functions ([3], [1], [2]). The basic idea of this method is to add one or two
exponential functions with a non-local support, that provides a successful
approximation of the boundary layer component, to the standard piecewise
linear basic.

In the context of adding artificial viscosity, the least squares method
can be applied ([97], [98], [84], [85]). A drawback of this method is that
when using piecewise polynomial elements, the assumption that the trial
and test functions belong to Sobolev’s space H2({2) requires the use of finite
elements of C*(2); but the construction of these elements on an arbitrary
triangulation is not easy. Besides, the number of nonzero entries of the
stiffness matrix increases.

The application of exponential fitting to the finite element method is
represented by two different approaches. In the first approach special piece-
wise exponential functions are used ([113], [116], [117]). They approximate
the smooth component of a solution somewhat worse than piecewise linear
ones but give a considerably better approximation of the boundary layer
component. This enables to achieve higher-order accuracy in the Galerkin
method. We also mention the non-conforming finite element method [119]
where discontinuous exponential finite elements are used.

Another approach that extends difference exponential fitting was pro-
posed for the one-dimensional convection-diffusion equation in [122]. The
further development of this method is the subject of this work. The basic
idea of this approach is to use the standard piecewise linear finite elements
on a uniform grid, applying special fitted quadrature rules to approximate
the boundary layer component. As a result, the approximate solution con-
verges to the piecewise linear interpolant of the exact one both in the mean
square and in the uniform norms.

Recently in the finite difference and finite element methods, adaptive
grids are used. They are constructed using a-posteriori information on the
approximate solution obtained on a uniform or coarse grid. To estimate the
quality of a numerical solution, special functionals named estimators are
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applied. A number of estimators is proposed in the literature ([64], [65],
[68], [66], [76], [671, [77], [78], [129], [89))-

The present work is devoted to the construction and justification of
exponentially fitted schemes in the finite element method for the Dirichlet
problem for the convection-dominated convection-diffusion equation. Now
we outline the basic idea of this approach.

Let {2 be a one- or two-dimensional domain with a piecewise smooth
boundary I'. We consider the Dirichlet problem

Lu=—-zAu+ (%(b(x)u) =f in 0, (1)
u=20 on I (2)

where £ € 1 is a positive parameter. The weak formulation of (1) — (2) is
given as follows: find u € H(2) such that

a(u,v) = (f,v) Vv e Hy(). 3)
Here a(,-): Hj(£2) x H}(£2) — R is the bilinear form determined by

a(u,v) :/ (5 VuVov — bug—Z) an
e

and (-, ) is the inner product in L2 (f2). We represent the solution of (1)—(2)
as
u=v+p (4)

where v is the smooth component of the solution which provides a good
approximation of u outside the boundary layer and p is the boundary layer
component which varies fast in a narrow region near some parts of the
boundary.

We choose a finite-dimensional space of test functions
T, € H}(2) with the basis {goj}jnil. We consider the discrete problem
corresponding to (3): find u € T}, such that

a (P, o) = (") Vol e Ty,. (5)

Here a"(-,) : Ty, x T, = R is a bilinear form approximating a(-,-) and
f* : Ty, —» R is the approximation of the inner product (f,-). In the usual
investigation of (5), the following expansion of the error is used:

a"(wh — ul,wh) = a” (W, w") — a"(u!, W) + a(u!, w")
- a(u,w") + a(u,w") - a(u, w") (6)
= fHw") - f(w") + (a - ") (', ") + au - u’,wh).
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Here u! is the interpolant of the solution in T%. In this case, the estimate of
the last term in (6) increases indefinitely as £ decreases because the solution
contains the boundary layer component p. The main point of the presented
approach ([122]) is to construct the special approximation of a” in order to
reduce the error a(p, w") — a®(p’,w") in the estimate

a"(u" —uf,w") = (FA (") - fw") + (a(u,w") - a"(u', w"))
= (f"(w") - f(") + a(v,w") — a" (v, "))
+(a’(p7w )_a’ (paw ))

The further development of this approach is as follows. Firstly, for the ap-
proximation of the boundary layer component we apply the quadrature rules
of higher accuracy. Secondly, we use the special approximation of the right-
hand side to eliminate the main term of the error of the quadrature rule on
the smooth component.

In the first chapter this approach is applied to the one-dime-sional
convection-diffusion equation with the highest derivative multiplied by a
small parameter. First we construct the discrete problem based on the linear
quadrature rule for the approximation of the convection term and use the
special quadrature rule for the approximation of the right-hand side. Next
we apply the nonlinear quadrature rule. For the obtained grid problems the
second order convergence in the uniform norm is proved for small values of
€.

The extension to the two-dimensional case in the second chapter com-
plicates the behavior of a solution. Along with a regular boundary layer
which is locally described by an ordinary differential equation, a parabolic
boundary layer can arise near some parts of the boundary. It satisfies a
parabolic differential equation.

In Section 2.1 the general characteristic of the differential problem
is given. The comparison principle is proved for the family of differential
equations with the boundary conditions of two types. The weak formulation
of the problem is presented. In Section 2.2 the problem free of a parabolic
boundary layer of order 0 is considered. Some estimates of the solution and
its derivatives are obtained by the comparison principle. On a uniform grid
the discrete problem based on the Galerkin method with piecewise linear
elements is constructed using the fitted quadrature rules. The first order of
convergence is proved.

In Section 2.3 we investigate the problem with regular and parabolic
boundary layers. In this case fitting methods fail ([55]). Therefore, together
with the fitted quadrature rules for the approximation of the regular bound-
ary layer, we use a special grid refined in the parabolic boundary layer. This
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grid is similar to that of Bakhvalov type but in the construction of the grid
the generating function is not used. Moreover, the distribution of nodes is
given by the one-parameter recurrent formula. The stability and conver-
gence results for this problem are obtained on this grid. In this case the first
order convergence is also proved.

In the third chapter the numerical results are discussed.

Section 3.1 is devoted to the numerical experiments in the one-dimen-
sional case. The results demonstrate high accuracy and the advantage of the
proposed method over well-known ones. Further, some modifications of the
Gauss-Seidel method for solving the two-dimensional discrete problem are
considered. The calculations were carried out on the grids of three types. In
the two-dimensional problem the exact solution was presented in the form
of infinite series. All numerical results on stability and convergence are in
close agreement with the theoretical ones.

1 One-dimensional convection—diffusion problem

In this chapter the boundary value problem for the ordinary differential
convection-dominated convection-diffusion equation is considered. In spite
of its simplicity, this problem has the characteristic feature of the convection-
dominated problems, namely, a boundary layer. As a result, most of the
classical finite difference and finite element methods fail. Thus, we have a
simple object to demonstrate in detail all characteristic properties of the
problem as well as of the numerical methods proposed.

1.1 The differential problem and its properties

1.1.1 Boundary layer
Consider the ordinary differential equation with the highest derivative
multiplied by a small parameter

Lu = —eu” + (b(z)u) = f() on (0,1), (1.1)
0<By<b(x)<B; on [0,1] 1.2

satisfying the Dirichlet boundary condition
u(0) = ug, u(l) =1wuy. (1.3)
The functions b and f are assumed to be sufficiently smooth

be C?0,1], feC*0,1). (1.4)
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Fig. 1. The appearance of a boundary layer with £ — 0.

The small coefficient 0 < £ << 1 of the diffusion term causes the derivatives
of the solution to increase exponentially at z = 1 ([19], [23]). The appearance
of a boundary layer is illustrated in Fig. 1. Here the exact solutions of the
problem

exp(=2/e)

—eu" + (1+22)u) =62 +22 — 2 +2——~——1
ev + (1 + 2z)u) =6z2° + 22 — 2 + = exp(=2/c)’

z € (0,1),
u(0) = u(l) =0,

are shown for four different values of the diffusion parameter ¢.

1.1.2 The asymptotic expansion of the solution
There are many techniques to describe the asymptotic behavior of the
solution of the problem (1.1)-(1.3) for small £. We use the method of expan-

sion in powers of £ proposed by M.I1.Vishik and L.A .Lusternik. We introduce
11—z

the new (’fast’) variable 7 = to describe the of boundary layer effects

near x = 1.
Applying the Vishik - Lusternik technique, we obtain the following ex-
pansion of the solution

u(z) = vo(z) + fo(7) + & (v1 () + (7)) + €°%()

where vy and v, are smooth components which give a good approximation
of the solution outside the boundary layer, go and £p; are boundary layer
terms, and 2%(z) is a remainder term. Here, vo(z) is the solution of the
reduced problem

(bvo) = f on(0,1), wvo(0) =uo (1.5)
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and vy (x) is the solution of the problem
(bv1) =" on (0,1), v1(0)=0. (1.6)
The boundary layer functions are described by means of the problems

A + A =0, Fo(0) =w —wo(1), lim () =0,

and
—p1 (1) + b(1)py (1) = ¥ (1)po(T )—Tb'( )Po(7),
p1(0) = —ui(), lim pi(r) =
with the solutions
( ) (u1 —vo(1 ))exp( b(1)7), (1.7)
= ((v1 — vo(1))¥'(1)7%/2 — v1 (1)) exp(—=b(1)T). (1.8)

The functions pg (T) are defined for 7 > 0 but for small values of € they
differ from zero only in a small vicinity of the point 7 = 0. Therefore we
multiply go(7) and f1 (1) by the cut-off function from C?[0,1] defined as

0, t<1/3,
s(t) = ¢ monotonically increases on [1/3,2/3], (1.9)
1, t>2/3

and pass to the variable z:

po(z) = s(x)po(1), p1(2) = s(x)pr(7). (1.10)

As a result, we get the following expansion of the solution of (1.1)—(1.3) for
small €

u(z) = vo(z) + po(®) +& (11 (2) + ;1 (7)) + %2(x). (1.11)

1.1.3 The estimates of the remainder term
We introduce the following norms for the function defined on the segment

0,1]
1 1/p
/wvw 1<p<oo,
lell =9 \J (1.12)

sup vrai|v|, p = o0.
[0,1]

The following theorem gives the estimate of the remainder term z(x) in the
uniform norm.
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Theorem 1. Under the conditions (1.2), (1.4) the remainder term z(x) of
the expansion (1.11) obeys the estimate

l2llo <ex ¥ (1.13)

with a constant ¢1 independent of «.
Proof. We express z from (1.11):

z(x) = 6% (u(z) — vo(z) — po(z) — € (1 (z) + p1(2))) -

We substitute this expression in (1.1) and use the expansion of the functions
b(z) and ' (z) into the Taylor series at 1. Collecting similar terms, we get

11—z 1-z)°
A+a3(572)

Lz(x) = f =ag+ a1 %A + as A (1.14)
where ag (), a1(z), a2(z), and az(x) are some bounded functions and A(z) =
exp(—(1—=z)b(1)/e). Since the functions  exp(—t) and ¢ exp(—t) are bounded
on [0,1] by some constants, the last two terms in f are also bounded.

The calculation of 2(0) and z(1) by means of boundary conditions for
the boundary layer components pg and p; and the use of properties of the
cut-off function s(t) yield:

z(0) = z(1) = 0. (1.15)

The problem (1.14)-(1.15) satisfies the comparison principle [122]. Take

y(z) = exp(oz) (70 +M1Z + Y2 exp (—%) + 75 exp (_%))

as a barrier function where

=1+ max bl =¥
T zeo1] 20

Then
Ly(z) 2 |Lz(z)] on (0,1),  y(0) =0, y(1)=0.
Hence by the comparison principle we have
[#@)] < ¥(a) < max y(z) = .

*) In what follows, ¢; denote constants which are independent of ¢, , and of h
at a later time.
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This completes the proof. O
Along with the expansion (1.11) consider the asymptotic expansion

u(z) = vo(z) + p(x) +e21(2) (1.16)

which will be used to derive the quadrature rule in Section 3. Here vg(z) is
the solution of the reduced problem as before. The boundary layer compo-
nent is taken like in [122] in the form

p(x) = s(x) (u1 — vo(1)) exp(—(1 — z)b(x)/e). (1.17)
For the remainder term z; (z) the following estimate is proved in [122].

Theorem 2. Assume that the conditions (1.2), (1.4) hold and z, is given
by (1.16) — (1.17). Then there is a positive constant c4 such that the estimate

5 <es on 0,1, j=0,1, (1.18)
holds for sufficiently small .
We also evaluate the difference between the functions py and p.

Lemma 3. Let py and p be the boundary layer components of order 0 given
by the formulae (1.10) and (1.17) respectively. Then there is a positive con-
stant cs such that the estimate

oo — p| < e on [0,1] (1.19)
holds for sufficiently small .

Proof. By the mean-value theorem, the following inequality holds for any
z€ [0,1]:

(1 —2)b(1)/e) — exp(—(1 — z)b(x)/e)]

| exp(—
< (b(1) - b(&) =2 exp(~(1 - z)b/e)

where b € [By, B;]. Since
[b(1) = b(x)] < 11— 2||b']o0 < c6]1 — 2|

and % exp(—at) < ¢y for all @ > 0 and ¢ € [0, 00), the following inequality
holds:

1b(1) — b(z)| —— exp(—(1 — z)b/e)

2
< 066(1_Tx) exp(—(1 — z)b/e) < cgere.

This completes the proof. O
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1.1.4 The weak formulation. The Petrov-Galerkin method

Multiply (1.1) by an arbitrary function v € Hy(0,1). By applying Green’s
formula, we obtain the weak formulation: find uw € H'(0,1) which satisfies
the boundary condition (1.3) and the equality

a(u,v) = (f,v) Vove H0,1). (1.20)

Here a(-,-): H'(0,1) x H}(0,1) = R is the bilinear form

a(u,v) = /01 (eu' — bu)v' du, (1.21)

and (-,-) is the standard inner product in L4(0, 1).

To solve the problem numerically, we use the Petrov-Galerkin finite ele-
ment method. To begin with, we describe some spaces and estimates which
are necessary for the investigation of convergence.

We introduce a trial space S, € H'(f2) with a basis {g; inng
test space T}, € H{(2) with a basis {'l,[)j};\il. Let a®(-,-) : S, x Ty, = R
be a bilinear form which approximates the form a(-,-) and fp : T, - R
be a functional which approximates the inner product (f,-). Then we have
the following formulation of the Petrov-Galerkin method (see, for example,
[40)): find u® € Sy, satisfying the boundary conditions (1.3) and the equality

and a

a(u,v") = fr(v") Vol € Ty. (1.22)

Since
Sn = span{po,....om+1}, Th = span{yr,..,¥m}
the formulation (1.22) is equivalent to the linear system of algebraic equa-

tions
Lyt = P (1.23)

where UM = (uy, ...,ups)” is the vector of unknowns, and Fh =

(Fr(¥1)—a(po, p1)uo, fr(W2), - fn(Wm—1), fa(Wa)—alomr, o )upr41)”

is the right-hand side vector. L” is the matrix with the elements
LY = a" (9,9, 6§ = Ly, M. (1.24)

The usual way to investigate the convergence of (1.22) consists in evaluating
the difference u — u” in the energy norm in terms of u — u! where u/ is the
interpolant of the solution in Sj,. Then we obtain the estimate in Ly,—norm.
But for the singularly perturbed problems the estimate of u—u’ may be very
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poor because of the boundary layer component of the solution. Therefore
we study the difference v — u” directly:

|ah(uh - uI,wh)| = |ah(uh,wh) - ah(uI,wh) + a(u,wh) - a(u,wh)|
< UMW) - FM)] + la(u, w”) — at(u!,w")| (1.25)
+ la(p,w™) —a(p", w")| + |a(z1,w") — a” (2], w")| Vwt € Ty

Here u is the solution of the differential problem (1.1), (1.3), u® is the
solution of the discrete problem (1.22), and uf, v{, p!, 2 € S;, are the
interpolants of u, vg, p, 21 respectively.

The basic idea of the method discussed here is to the construct an ap-
proximation of the bilinear form that reduces the error of the boundary
layer component. The general analysis of the problem and the construction
of the discrete analogue which gives the first order e—uniform convergence
can be found in [122]. We cite some results from this work.

For vectors V* = (vq,--- ,UM)T € RM we introduce the discrete p-
norms
M 1/p
di|v;|P dz ,1<p<oo,
V¥, = (Z i ) (1.26)
e |vil, p=00
and . .
V™, = 11" (& v, 1<p<oo. (1.27)

Here D" is the diagonal matrix with the positive elements
d; = meas(supp ¢;), i=1,..,M.

Note that (1.27) is a norm in R when the matrix L" is invertible. Together
[e]

with the space S, we consider the space Sp= span{¢1, ..., o }- The spaces

[e]

Sy and T}, are equipped with different norms. In order to introduce these

[¢]
norms we use the isomorphisms S; + RM and T}, & RM defined by
M [¢]
Uh:Z’UiQOi ESh, Vh:(vla"'avM)TERMa
i=1

M
’wh:Z’wl"l,[JiETh, Wh:(wla"'awM)TeRM‘

=1
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[e]
We introduce for v" €85}, and w” € T}, the norms
0"l =1V, — and  flwtll,, = IW"[,, (1.28)

respectively.
Because of definitions (1.24), (1.28), and the Hélder inequality the fol-
lowing estimate of the bilinear form a” holds.

Lemma 4. [122] Suppose that 1 < p < o0, 1/p+ 1/q = 1 and the matriz

[e]
L" is nonsingular. Then for all v € Sy, and w" € T}, we have
la® (", w™)| < [[o*|I, llw™ |, 5 (1.29)
Now we formulate the basic convergence result.

Theorem 5. Let u and u” be the solutions of the problems (1.20) and
(1.22), respectively. Then for the interpolant u! of u in Sj the error es-
timate

hy _ h Bg T ,.hY _ h
”uI_uh”ph S sup |(f7w ) fh(w )+Z’ (u , W ) a’(uaw )l (130)
’ wheTy/{0} Il |||q,h
holds where 1/g+1/p=1,1 < p < oo.

Remark. The error estimate in the continuous LP-norm follows from
the norm equivalence

esloll < o, < colell,, ¥ €S (131)

where constants cg, ¢y are independent of h.

The discrete problem which is first-order convergent, uniformly in £, was
constructed in [122]. In the next two sections we will obtain the second-order
method.

1.2 The finite element method with a linear quadrature rule
In this section we introduce the restriction
b'(z) >0 on [0,1) (1.32)

which simplifies the proof of stability. This restriction provides the fulfill-
ment of the maximum principle for the problem (1.1) — (1.3). We show that
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for small £ this restriction can be introduced without loss of generality. As-
sume that for some zo € [0, 1] we have b'(z) < 0. Introduce a new unknown
function

w(z) = u(z) exp(—ozx)

with the positive constant

=1+ max jb'] — o'
T zeo1] 20

Then the problem (1.1) — (1.3) is equivalent to the following one

—ew" + (b —2e0)w’ + (b' + bo — e0®)w = fexp(—ox) on (0,1),
w(0) = uo, w(1l) = uy exp(—o).
For small £ the coefficient of w is positive on the segment [0, 1] since b’ +

bo — e0? > b — e0? > 0. Hence the maximum principle holds.

1.2.1 Construction of the quadrature rule
To approximate the solution u, we use the piecewise linear finite elements
on a nonuniform grid

wp={z;: 1=0,1,...,n; 0=29 <21 <...<Zp_1 <zp=1}(1.33)

with a mesh size h; = z; — x;_1. For simplicity we consider a quasiuniform
grid satisfying the condition

cioh<h;<h= 112182)% h;. (1.34)

We denote the set of interior nodes by
wh:{xi: T; €Wy, t=1,..., n—l}.

Introduce the basis functions ¢;(z) € C[0, 1] defined by

(x —xi—1)/hsy, i z€[zi—1,2;]N[0,1];
pi(x) = @i+1 — 2)/hiy1, i 7 € (35, 311 N[0, 1;
0 otherwise

and the spaces of trial and test functions

Sk =span{pg,...,on} and Ty =span{e1,...,n-1}
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To approximate the problem (1.20), we use the Petrov-Galerkin method:
find u" € S}, such that u”*(0) = ug, v*(1) = u; and

a(wh,wh) = (f,w") Vuh e T. (1.35)

This approach has some disadvantages. With the boundary layer, the
solution of the algebraic system has unsatisfactory accuracy. Besides, this
system becomes unstable for € < h. Finally, when constructing the algebraic
system, one have to integrate functions. Thus, the application of quadrature
rules is quite natural. We choose quadrature rules in a special way to ensure
stability and to improve the accuracy of the approximate problem obtained.

Therefore we return to the bilinear form (1.21). The first term is inte-
grated exactly for any u € Sy, v € T}. For the second term we use the
following quadrature rule on each interval:

Z;
/ bvdx ~ (aibi_lvi_l + Blblvl) h; (1.36)
Ti—1
where v; = v(z;) for an arbitrary function v(z). Using this formula for a
we obtain the new bilinear form aj of an algebraic type for v € Sy and
wh € Ty:
n
a’(v,w") = Z (e(v; — vi—1) /by — asbi_1v;—1 — Bibsv;) (wf - wf_l). (1.37)
=1
The standard way to justify the accuracy of the Galerkin solution is
to use Strang’s first lemma and the closeness of the bilinear forms a and
a” with arguments from the class of admissible functions. Unfortunately,
in our case this method yields poor estimates due to the boundary layer
components pg, p1. Therefore we choose the parameters a5, 8; in such a way
as to make these bilinear forms as close as possible just for the functions
Po, p1- For example, for the function py the exact equality

/ bpo dx = (a;bi—1po,i—1 + Bibipo,i) hi

should be taken. However, this condition contains the integral in the left-
hand side, that does not permit to obtain the explicit expression in the
general case. Therefore for convenience we use (1.7), (1.10) for py in the
right-hand side of this equality and replace b(z) by its linear interpolant.
As a result, we arrive at the equality

/wi (bi—1(z; —x)/hi + bi(z — 1)/ h;) exp(=b(1)(1 — ) /e) dz

(1.38)
= oybi—1 exp(—b(1)(1 — zi—1)/e)hi + Bibsexp(—b(1)(1 — x;)/e)hs.
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Taking the integral in the left-hand side and dividing the obtained equality
by h;exp(—b(1)(1 — z;)/e) we get

1 1 1
a;bi_q exp(—ai) + Bib; = b;_1 (? - — exp(—ai) — ? exp(—ai))

i i (1.39)
1 1 1
+ b (— -+ exp(—ai))
where g; = b(1)h;/e. To the above equality we add the equation
a;+8; =1 (1.40)

which permits to approximate an integral of a smooth function with the first-
order accuracy. Thus, we arrive at the system of linear algebraic equations
in two unknowns. Its determinant is given by

& = b; — bi_1 exp(—0y). (1.41)

Since ' > 0 and exp(—o;) < 1, & is strictly positive. Hence the system
(1.39) — (1.40) has an unique solution.

Thus, we can expect that the boundary layer function py satisfies the
equality

/ I bpo dz = (bpo); hi + O(h?). (1.42)

Ti—1
The proof of this statement is given later. Here we use the notation
(bpo); = aibi—1po,i—1 + Bibipo,i-

It is easy to verify that for p; we have
T
/ bpr dz = O(g).
Ti—1

Actually the contribution of this term is still smaller due to the coefficient
e of the function p; in the expansion (1.11).
Now consider the remaining part of the solution

g(z) = vo(z) +ev () +&2(2). (1.43)
For g(z) the quadrature rule (1.36) has only the first-order accuracy:
[ balate)do = )i+ (1/2 - Bi)hd buo),,
zi—1
+ (bv1); hi + O(h® + eh® + €2h) (1.44)
= (bg); hi + (1/2 = B;)hi(bg);_, + O(h® + eh?® + £°h).
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Here we use the fact that the functions vj, v{, and 2z are bounded on [0, 1].
Take into consideration the equality

—e(po +ep1)" + (b(po +ep1))’ = O(e)

which results from the definition of py and p;. Then we transform the main
term of the error to the form

(bg)' = (bg) —eg”" + O(e) = (bu) —eu” + O(e) = f + O(g).

Then instead of (1.44) we get

[ sagte) o = wo)in
o (1.45)
(U2 = )R fimr + O(K® + ek + &2h).

When constructing the bilinear forms a and a” all the terms are multiplied
by —(w")’. Therefore the main term of the error a(g,w") —a”(g, w") on the
segment [z;_1,x;] takes the form

_(1/2_5i)h§fi—1 (wh);—1/2- (1.46)

We construct the quadrature rule for the right-hand side to eliminate this
term. We rewrite the functional in the right-hand side as

/1 f@)w"(z)dz = — /1 F(z)(w"(z))' dz Vw" eT" (1.47)
0 0

with the antiderivative F'(z) = f(z). Using the Taylor expansion, in a
similar way as (1.44) we obtain

/ Y Pl)ds = Frhi+ (1)2— BB fis + O(®).  (1.48)

Thus, the main term of the error coincides with (1.44). In order to avoid the
calculation of the antiderivative, we use the difference analogue of integra-
tion by parts taking into account the boundary conditions w”(0) = w"(1) =
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/Olf(x) /F ) dz = — Z/ F(z)(w") dz

= =@M (Frhi + (1/2 = B)R2 fi) + O(h) Y ()i,
=1 =1
n—1 n
= > wi(Ffy — F) = Y (/2= B fia (wh)i_y g
=1 =1
+O(h*) Z(wh);—1/2-
i=1

We choose the weights p; and v; in such a way as to replace the difference
between the values of the antiderivative F' by the function f with the third-
order accuracy:

Fiy —Ff =pifio +vifi + O(R®). (1.49)

Then we use the Taylor expansion at the point z;_; and set the coefficients
of h; and h? to be equal:

wi + vi = hi(1 = B;) + hiy1Bit1,

(1.50)
2v;h; = B (1 — B;) + hit1 Bit1 (2hi + hiy1).

Hence u; and v; are uniquely determined. As a result, in the right-hand side
we get the approximate functional

n

Fulw™) =" (pifior + vifi)w} (1.51)

=1

with the coefficients p; and v; from (1.50).

On substitution of the bilinear form a(-,-) and the right-hand side (£, w")
into (1.35), we obtain the discrete problem: find u”® € S}, such that u*(0) =
ug, u?(1) = u1, and

a®(u", wh) = fr,(w") Y wh € Ty, (1.52)

We rewrite this problem in the equivalent matrix-vector form: construct

the function
n
= Z YiPi
=0
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with the weights ; which satisfying the conditions vyo = wo, Yn = u1 as well
as the system of linear algebraic equations

Al = Fh (1.53)

with the vector of the unknowns v = (4, ..., fyn_l)T and the given the right-
hand side F* = (F}, ...,FTIZ_I)T where

F1h = 1 fo +vifr + aruo,
Fl = puifio1 +vifi, i=2,..,n—2,
Frlf—1 = pp—1fn-2 + Vn_-1fn-1 + €n_1u1.

The matrix A" has the tridiagonal form

d1 —€1
—as d2 —€9 0
Al =
0 —Qp—2 dn—2 —€n—2
—Op—1 dn—l
and its elements are given by
a; = E/hi + a;b;_1,
d;i = &/hi + &/hit1 + air1b; — Biby, (1.54)
ei = €/hiy1 — Biv1biya,
t=1,.,n—1.

1.2.2 Properties of the discrete problem
Now we investigate the discrete problem.

Lemma 6. Under the restrictions (1.2), (1.4), (1.32) for any e, h > 0 the
matriz A" of the system (1.53) is an M-matriz and hence is nonsingular.
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Proof. First we consider the parameter o; of the quadrature rule. From
the equations (1.39), (1.40) we have

o — 1 (b~ o; exp(—o;) — 1+ exp(—0;)
L bi - bi—l exp(—ai) -t 0'12
0? —o;+1—exp(—a;)
+ b = ) (1.55)
1 1 — exp(—o0;) 1
= i —bi—1) +bi) — —
b; — b;_1 exp(—a;) ( o? (b = bi-1) + ) .

where o; = b(1)h;/e. Since the inequalities o; > 0, exp(—o;) < 1 and
b’ (x) > 0 hold for arbitrary € and h, we have

a; > 1/0'1' Ve, h; >0. (1.56)

Due to (1.54), (1.56), and inequality b;_; < b(1) the estimate

| @
o

bi—1e
i1 <f+aibi_1:ai

<
0 - (1)hl hz

&
o~

holds. Hence the coefficients a; of the system (1.53) are strongly positive.
The proof of the positiveness of e; is rather complicated. Because of the
definition of 8;11 the following equalities hold:

_ biy1 (bi (i _exp(=0i) _ eXP(;m‘) _ exp(_ai))

£
o hi bi-l,-l - bi exp(—ai) (7'12 a; g;

1 1 exp(—oy)
b; _——— ——7
sos (5= o+ 0

(1.57)
N i _ bzg—i-l + bi-l,-l bi exp(—ai)
hi ag; (bi-l,-l bt bi exp(—ai)) bi+1 bt bi exp(—ai) a;
biy1 — b
+ bjexp(—o;) + 'H? (1 - exp(—0y)) )
The difference of the two list terms in the right-hand side equals
b(1)bjp1 — bzg—i-l + b(1)b; exp(—0;)
ag; bi - bi expl—o;
(bit1 p( ) (1.58)

_ big1 (b(1) — biy1) + b(1)bi exp(—0:)
a; (bi+1 - bi exp(—ai)) )
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Under the restrictions (1.2) and (1.32) both terms in the numerator are
nonnegative and the denominator is positive. For the same reason, in the last
term all three quantities in parentheses are nonnegative and the coefficient
of the parenthetical expression is positive. Hence we have ¢; > 0 V i =
1,...,n—1.

For the system (1.53) the following relations hold:

dy —as >0,
di — Qi1 —€5—1 = 0, 1= 2, vy — 2, (1.59)
dp_1—ep_s >0.

Because of the positiveness of a; and e; for all 4, the matrix in (1.53) is
diagonal-dominant along columns and strictly diagonal-dominant along the
first and the last ones. Taking into account the fact that the matrix A" is
irreducible [21], this leads to the conclusion of Lemma 6. O

Lemma 7. Let W" = (wy, ...,wn_l)T be the solution of the problem
(am)"wh = " (1.60)

with some right-hand side Q" = (q1, ..., qn_l)T. Under the restrictions (1.2),
(1.4), (1.32), and

e< Cnh, c1 >0 (161)
the estimate
n—1 n—1
D Jwi — wia| + |wi| + |wpa| S ez Y gl (1.62)
i=2 i=1

holds with a constant ¢1o independent of € and h.

Proof. In a similar way as Lemma 3.3 in [122] we rewrite the system
(1.60) in the form
ei—l(wi - wi—l) + afi—i—l(wi - wi—i—l) = 4i, 1= 17 ey — 17
wo = wy, = 0.
Using the notation
Vi = Wi — Wi—1
we write the difference equation from (1.63) as

€i—1 q;
v — —2

Vit1 = i .
Qi+1 Qi+1
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Let us set
-1 -1
Hdk:l and dezo
k=l k=1
for arbitrary d;. Then for all ¢ = 1, ...,n the equality
i-1 [ i—1

v = H SN 2] B (1.64)

1%+ D7 \pjpn 31 ) G54

holds. Taking into account the equality

n
E v; =w, —wo =0,
=1

we obtain the initial value
i—1 n i—1

ulzz;i 11 k-1 &/Zne{—l. (1.65)

a a a
=1 j=1 k=j+1 k+1 j+1 i=1 j=1 j+1

From (1.64) and (1.65) we get

n n i—1 i—1
e~_1 er—1 | lgjl
Ivl< — | fui| + ——
(1.66)
n i—1 i—1 en_1 |q|
<2 > NI o= o
i=1 j=1 \k=jt1 W1 | Qi1

Taking into consideration the definition of the coefficients a; and e in
(1.54), the restriction (1.56), and the fact that b is bounded due to (1.2),
we obtain the inequalities

ex—1 =€/h; — Brbr < g/c1oh,

Ap41 = E/hi + apaby > 6/Clohi + BO/Q,

1/0,j+1 S 1/ (E/hz + 30/2) S 2/30
Applying them to the right-hand side of (1.66), we have the estimate
i—1

er—1 q; 2
o) i it o o
pejin W1 | Qi1 0

1
1+ Bocloh/Qé‘-
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Using this inequality we change the order of summution in the right-hand
side of (1.66):

n i—1 n n—l
ESMIEETIEES ) Sl
=1 j=1 l1]1

(1.67)

4 n n—1
B_Z Z|QJ|_ Z|‘IJ

Thus we get (1.62) with the constant ¢;2 = 4(1 + 2¢11/Bocio)/Bo. O
In the terms of the norms in the spaces of trial and test functions (1.26)
and (1.28) the estimate (1.62) for functions w® € T} has the form

1
(™) llx < crzllw®lly - (1.68)

1.2.3 Convergence result
Now we consider the main theorem of this section.

Theorem 8. Let (1.2), (1.4), (1.32), and (1.61) be valid for the problems
(1.53) and (1.1) — (1.3) with the solutions u" and u respectively. Then the
estimate

max |ul —u;| < c15(h® +€*/h+eh +e?) (1.69)
0<i<n

holds.

We will proof the same theorem in more general case in the next section.
Notice that according to (1.69) the approximate solution has the second-
order accuracy with respect to h for € << h, in particular, for € < h3/2. The
numerical experiments presented in Chapter 3 confirm this result. Thus, for
€ < h the constructed scheme is more accurate in comparison with other
well-known methods, for example, with the first-order scheme from [122].

1.3 The finite element method with nonlinear quadrature rule

In this section the monotonicity (1.32) of the function b(x) is not required
because of the application of the nonlinear quadrature rule for the approx-
imation of the convective term in the bilinear form. Theoretically this con-
dition is not too restrictive, but in practice it is inconvenient, for example,
when the function b(x) is given discretely.
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1.3.1 Construction of the quadrature rule

We return to the approximation of the bilinear form (1.21). The first
term is integrated exactly for any u € Sy, v € Tj. For the second one we
use the following quadrature rule on each interval:

/ bvdr ~ (aibi_1 + ﬂzbl) (ai’l}i_1 + Bwl) h;. (1.70)

Unlike the similar formula (1.36), in this case in the points for the calculation
of the values of the functions b and v are choose individually with the help
of the parameters a; and §; on each interval [z;_1, z;]. When we use (1.70)
for a, we obtain the new bilinear form a” of an algebraic type for v, w" € Sy:

n

a"(v,wh) = Z (e(vi —vi_1)/h;

=1

(1.71)
— (ogbi—1 + Bibs) (avi1 + Bivs) ) (wl —wl ).

As before, we choose the parameters «;, 3; so that the bilinear forms a
and a” are as close as possible just for the function pg. Generally speaking,
the exact equality

/ bpdx = (a;b;_1 + Bib;) (ipo,i—1 + Bipo,i) hi

should be taken. However, this condition contains the integral in the left-
hand side, that does not permit to obtain the explicit expression in the
general case. Therefore for convenience we replace b(z) by its value b(z) =
bf = a;bi—1 + B:b; on [z;_1,%;]. Thus we arrive at the equality

/ " b exp(<bt(1 — 7)/e) do
. (1.72)
= b} (a; exp(—b; (1 — z;_1)/€) + Bi exp(—b; (1 — ;) /€)) hi.

Taking the integral in the left-hand side and dividing the obtained equality
by h;exp(—bf (1 — z;)/e), we get
o; exp(—ai) +8; = (1 - exp(—ai)) /O'i (173)

where ¢; = b} h;/e. To the above equality we add the equation

a;+6;=1 (1.74)
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which permits to approximate an integral of a smooth function with the first-
order accuracy. Thus, we arrive at the system of linear algebraic equations
in two unknowns.

Notice that for the function b with the constant value beonst,; On the
segment [z;_1, ;] the system (1.73) — (1.74) becomes linear:

1
Qeonst,i exp(—oi) + Bconst,i = 0__ (1 - eXp(_Ui)) 3
i
Qconst,i + Bconst,i =1
Its solution is obtained in the same way as in [122]:

1 1 8 1 exp(—0;)
1—exp(—0;) i "M T o 1—exp(—0y)

Qconst,i —
In particular, for any positive beonst,; this solution satisfies the inequalities
1/2 < agonst,i <1, 0< Beonsti <1/2 VY hie > 0.
Further we consider the case

e < h? (1.75)

which is of practical importance. We express §; from the system (1.73) —
(1.74):

1 exp(—0;)
= DT 1.
& o; 1—exp(—oy) (1.76)
From (1.74) it follows that

Taking into account the definition of b} and (1.77), we can write o; as
o; = (bi—1 + Bi (b; — bi_1)) hi/e.

Hence there exists at least one solution a;, 8; of the system (1.73) — (1.74)
with the properties

1/2<a; <1, 0<B;<1/2

This follows from the fact that for 8; = 0 the left-hand side of (1.76) is
smaller than the right-hand one, and the opposite is true for 3; = 1. There-
fore, the root can be found by the bisection method.
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Now consider the remaining part of the solution
g(z) = vo(x) + €21 (x).

In a similar way as in (1.44), using the fact that the functions vj, v{, and
z1 are bounded on [0, 1], we can show that the quadrature rule (1.70) has
only the first-order accuracy:

[ @@ s = bigin+ (12— pOR0g), + O (78)

We calculate (b(z)g(z))’ in (1.78) only at the interior points of the domain
2. Therefore, considering the inequality (1.75) and the definition of py and
p1, we obtain the estimate

—€(po+ep)” + (b(po+ep)) <eoe for x<1—hy,

Taking into account this estimate, we transform the main term of the error
in (1.78) as follows:

(bg)' = (bg) —eg”" + O(e) = (bu) —eu” + O(e) = f + O(g).
Then instead of (1.78) we get
[ b@)g(e)dz = bigihs + (12 B2 fios + OB + &l + &*h).

Recall that when constructing the bilinear forms a and a” all the terms are
multiplied by —(w")’. Therefore the main term of the error on the segment
[zi—1,2;] has the form

—(1/2 = Bi)hi fia (wh);—1/2-

We use the same functional of the right-hand side as in (1.51) with the
coefficients (1.50) to eliminate this term.

Substituting the bilinear form a(-,-) and the right-hand side (f, w") into
(1.35), we obtain the discrete problem: find u® € Sy, such that u*(0) = ug,
u?(1) = u1, and

a®(u", wh) = fr,(w") Y wh € Ty, (1.79)

We rewrite this problem in the equivalent matrix-vector form: construct

the function
n
u =3 T
=0
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with the weights T; which satisfy the conditions 19 = ug, T, = u1 as well as
the system of linear algebraic equations
Atr=F (1.80)
with the vector of unknowns
7= (11, ...,Tn_l)T

and the given the right-hand side

T
Fh = (FF,.,EM )

where

F1h = 1 fo +vifr + aruo,
Fl = puifio1 +vifi, i=2,..,n—2,
Frlf—1 = pp—1fn-2 + Vn_-1fn-1 + €n_1u1.

The matrix A" has the tridiagonal form

d1 —€1
—ag d2 —€9 0
A= L
0 —Qp—2 dn—2 —€n—2

where
a; =&/h; + a;b},
d; = E/hi + E/hi+1 + ai+1b2‘+1 - ﬂibz‘, (1.81)
€ = E/hi+1 - 51‘4—157_,_1-
1.3.2 Properties of the discrete problem
Now we investigate the discrete problem.

Lemma 9. When the conditions (1.2), (1.4), (1.75) are satisfied for any
h, € > 0 the inequalities

1/2<a; <1, 0<B;<1/2 (1.82)
hold.
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The lemma is proved in the same way as Lemma 3.2 from [122].

Lemma 10. When the conditions (1.2), (1.4), (1.75) are satisfied for any
h, € > 0 the matriz A® of the system (1.80) is an M-matriz and hence is
nonsingular.

Proof. From (1.81), (1.82), and (1.2) it follows that a; > 0 for all i. We
show that e; > 0 for all i. For e; we have
5

7— = Bit1biy.-

e =
Y hi

From (1.76) it follows that

1 exp(=0oiy1)
oiy1 1—exp(—0oiy1)

Bitr1 =
Collecting two last equalities and the definition 011 = b}, hit1 /€, we get
_ bi1
g = ——1—
1 —exp(—0it1)

Since the inequalities o; > 0, exp(—o;) < 1, and b(z) > By > 0 hold
for any ratio between € and h, we have

e, >0 Ve, h>0.
For the system (1.80) the relations

di —ag > 0,
di—ai+1 —€i—1 :0, i:2,...,n—2,
dpn_1—en2>0

hold. Because a; and e; are positive for all ¢, the matrix A* is diagonal-
dominant along columns and strongly diagonal-dominant along the first and
last ones. Taking into account the fact that the matrix A” is irreducible [21],
this completes the proof. [

Lemma 11. Let W* = (w, ...,wn_l)T be the solution of the problem
(am)"wh = " (1.83)

with some right-hand side Q" = (¢, ..., qn_l)T. Under the restrictions (1.2),
(1.4), and (1.75) the estimate

n—1 n—1
> fwi = wisa| + |wi] + [wn1] < c10 Y lail (1.84)
i=2 i=1

holds with a constant ¢19 independent of € and h.



42 Karepova E.D., Shaidurov V.V.

Proof. We use the inequality (1.66) from Lemma, 7:

n i—1 i—1

Z|U1|<ZZZ [T 2= %2 (1.85)

a a;
i=1 j=1 \k=jt1 CBt1 | Si+1

Taking into consideration the definition of the coefficients a and ey, in (1.81)
and the fact that b is bounded, in accordance with (1.2) we get

i—1

€r—1 1 1
H 4 P~ (1 — exp(—0y)) H exp(—oy)
k—jg1 EEL ) Gt i k—j+1

< Bi (1 — exp(—=B1h;/e)) exp (—%(mi_l - x])) .

Using the last inequality, we change the order of summation in (1.85):

Sl < gy 31— expl-Buif) Yoewp (=Pt —20) )

Jj=1

Z 5 S (1 exp(~Buhis /o)) exp (-Bei-20)

j=1 i= ]+1

_BZqJZd

j=1 i=j+1

z_'x]

Here we applied the inequalities 1 — exp(—t) < 1 and texp(—at) < d which
are valid for ¢t € (0,1) and @ > 0 with a constant d. Due to (1.75) and
(1.34), the last sum over i can be estimated by a constant ¢1;. Taking into
account the definition of v;, we complete the proof of the estimate (1.84).
O

In terms of the norms in the spaces Sy and T}, the estimate (1.84) for
functions w” € T}, has the form

1
1) llx < collw”y - (1.86)

1.3.3 Convergence theorem
Now we consider the main result of this section.

Theorem 12. Let u be the solution of the problem (1.1), (1.3) with the
conditions (1.2), (1.4), and u® be the solution of the problem (1.80) with the
condition (1.75). Then the estimate

o |ul —w;| < er15(h® +eh+e+e®+£/h) (1.87)
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holds.
Proof. By Theorem 5 for p = oo the estimate
_ T
e Juf — wil = [lu" = u'll
h h By h o h h81.88)
S sup |(f7w )_fh(w )+a]; (u , W )_a’(u , W |
wheT, llw |||1,h

holds.

We denote by g(z) the sum of the smooth component and the remainder
term in the expansion (1.11):

g(z) = vy + ev1 + e%z(z).
Then we can write

|(f,w") = fa(w") + a"(u, w") — a(u®,w™)| < |a*(po, w )—a(po,w(hl)lsg)
+6|a’h(p17wh) - a’(plaw )l + |(f7w ) - fh(w ) +a (gaw ) - a’(ga wh)l‘
Consider the first term in the right-hand side

n

|5 (eons = i)/t (uf = ) = [ (et = b))

i=1
1
—‘/ bpo(w dx—Zb*p("jl w —w —1)‘-
0
Rewrite the term | e
(A TR

as

A= [ Gobon = p) do = bipi = b (53 - o1)

i—

1o "
Sh—/ bpdx — b; p; + ci6e = A;.
Here we use the estimate (1.19) from Lemma 3. Using the identity (1.72),
we get
by (o exp(—(1 — z;_1)b; [e) + Biexp(—(1 — z;)b} /<))
b; exp(—(1 — z)b} /£) d=.

Ti—1

1
h;
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Then we transform A; to the form

A4; = b; B; (exp(—(1 — z;)b} /e) — exp(—(1 — z;)b;/€))
+ b a; (exp(—(1 — z5-1)b} /e) — exp(—(1 — zi—1)bi—1/¢))

(1.90)
/ —5) pla) da
+ h—’ / (exp(—(1 — z)b(z)/e) — exp(—(1 — z)b} [€)) dx + ci6¢
The first term is estimated by the mean-value theorem

|exp(—(1 — 2:)bj /) — exp(—(1 — z:)bi/e))]

1—; "
b — b ex exp(—(1 —z;)b/e) where

<
b€ [By,B1]. (1.91)

Besides, |b} — b;| < hi||t'||co and the function ¢2 exp(—Bot) is bounded by a
constant ¢17 on (0,00). Using (1.2) and (1.82), we obtain

b; Bi lexp(—(1 — ;)b /) — exp(—(1 — z;:)bi/€)
Ehi
< 0173151'”17,”001_7

i—1

< cige.
In a similar way we estimate the second term in (1.90)
bia; lexp(—(1 — z;_1)b} /&) — exp(— (1 — z;-1)bi—1/€)| < c19€
The third term is also estimated with the help of (1.2) and (1.82)
T4
[ @ -8 o
Ti—1
=[1¥ll

1

h;

<l [ (=01 = 0)Bo/e) de
o (1.92)
(exp( (1 —z;)Bo/e) — exp(—(1 — z;_1)Bo/¢)) < ca0e

The integrand in the fourth term is estimated in the same way as in (1.91)

lexp(—(1 — 2)b(z) /e) — exp(— (1 — 2)b3 /e)|
< Bl oo

) i (1.93)
% exp(—(1 — z)b/e), where b € [Bo,Bi].
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Using this inequality, we obtain the estimate of the fourth term in (1.90):

2—{/:_1 (exp(—(1 — z)b(z)/e) — exp(—(1 — z)b} [€)) dx
<on [ I Zexp(-(1-ajbfe) e

s . (1.94)
< cosze (1 + (1= x)b) exp(—(1 — x)l:)/e) w

< g€ (exp(—(l —x;)b/e) — exp(—(1 — xi_l)l;/e)) < coqe.
Summarizing the estimates (1.91)—(1.94), we can write
|Az| S Cog6E. (195)

Thus, for the first term in (1.89) the following estimate holds:

n

Z Aj(w; —wi—1)

=1

< casel| (W) |l1,n < ool (™) [l1n -

n
<cwe Y fwi —wia|
=t (1.96)

la™ (po, w™) — a(po, w")| <

Estimate the second term in (1.89):

n

1
|3 (elors = i) = Viot,) (wf =) = [ (et~ bon)(u")' ds]

i=1
n

= ‘ /1 bpr(w) dz — > b} (wf —wl ) ‘
0

=1

Consider the expression
1 /%
B; = h_/ bp1 dz — b; (@ip1,i—1 + Bipr,i) -
i g

Taking into consideration the form of the function p;, we can estimate the
first term in the above expression:

1 /%
h_/ bp1 dz| < ezoe/h;.
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The second term is bounded due to the estimates (1.2) and (1.82). Thus,
we have

Bi S C316/hi.
Hence, we obtain

n

Z B;(w; — w;_1)

=1

la" (o1, w™) — a(pr, w™)| <

(1.97)
1 £
< ecas Z prlws = wia] < Fessl| ")l < Gesal@"Y B
i=1

This estimate is worse than (1.96). However, the boundary layer component
o and the estimate (1.97) have to be multiplied by &, that gives the same
order of convergence.

Finally, consider the last term in (1.89):

1
| / Fulde -3 ufoos + vefl - [ o'~ o)y da
i=1

=32 (o0 = g} s = ¥107) - )|

1 1
< ‘ —/ F(z )'dx+/ bg(w™) —
0 0

—Z (Fiq — )+7hh)w +bigl(w h—wf_l))‘
—0

_‘/ (bg — F)( ’+2n: —wl )+ mhPwl — blgr (wh — wl ))‘

=1

where F'(x) is the antiderivative of f(z) and 7; are the values of a function
bounded on [0, 1]. Consider the term

T4

1
C; = m (bg F)dz + o;F;_1 + BiF;

(az i— 1 Bz l) (aigi—l - Bzgl) .
Using the expansion of the functions bvg, bv; and b*vf, b*v] into the Taylor

series at the point z; ; and taking into account the fact that bz, b*z* are
bounded, we get

1 [%
h_/ bgdr —b*g* = (1/2 — B;) hi(bg),_, + O(h* + eh + &7). (1.98)
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In view of the definitions of the boundary layer components pg and p; the
estimate

—e(po+ep1)’ +(b(po+ep1)) <ecsse YV e[0,1]
holds. With the last inequality we have
(bg)' = (bg) —eg” + O(e) = (bu) —eu” + O(e) = f + O(e).
Than the main term of the error in (1.98) has the form
—(1/2 = B)hifima (wh);_y o + O(B? + €h).

From the identity (1.48) we obtain
1 [%
—h—/ F(z)dz + Ff = —(1/2 — B)hifi_1 + O(Rh?).
t Jzi—1

Thus, the estimate
|Cl| S C36 (h2 +eh+ 62)

holds and we have

|(f7 wh) - fh(wh) + a’h(ga wh) - a’(ga wh)l < ‘ Z Cl(wf’ - wi—lh) + h?nzwz

=1

< czr(h® + eh+ %) Z lwl —w;_1n| < czg(h® +eh +&)||(w™) |lin (1.99)
=1

< eso(h® + eh + %) w1 -

Finally, the estimate (1.87) follows from the relations (1.88), (1.89) and
estimates (1.96), (1.97), and (1.99). O

Notice that, as before, for ¢ <« 1 and even for ¢ < h in the case of
practical importance, the accuracy of the obtained solution in accordance
with the estimate (1.87) is of the second order with respect to h. This is
confirmed by numerical experiments in Chapter 3.

As a result, for £ < h the constructed scheme is more accurate than the
similar one of the first-order accuracy from [122]. Therefore we concentrate
our efforts upon this case. It should be noted that the convergence is proved
for a non-uniform grid.

Now we discuss the question connecting the calculation of the coefficients
a; and B; of the nonlinear system (1.73) — (1.74) on each interval [z;_1, z;].
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Taking into account (1.76), we have the following formula for the coef-
ficient §;:

1 exp(—o;)
o; 1—exp(—0o;)

ﬂi = , Where o; = (bi—l + ﬂl (bl — bi—l)) hi/é‘.

Since the derivative b’ is bounded, we have
b; = bj_1+ hj_10;_1 where |6i—1| < ||bll|00

Using this notation, from the system (1.73) — (1.74) we get

exp(—o;)
Bi=—1——F
1 —exp(—03)
(1.100)
+ 1 bi—1 hi—16i—1 hi—15i—1)
bi—1 +hi—10;_18i \oi-1  0i—1(1 — exp(—0;_1)) o},

Taking into account (1.2) and (1.75), we obtain the following estimate of
the derivative of the right-hand side of (1.100) with respect to §;:

hi—16i—1 (bi—l + hi—16i—1 hi—ldi—l)‘ < et

(it + hi—10;16:)% \oi-1 = 0i1(1—exp(—0;_1)) 02,

with a constant c4g independent of € and h. Thus, for € < 1 the right-hand
side of (1.100) is a contraction operator on [0, 1] with a sufficiently small
contraction coefficient of order £. Therefore we define §; as the limit of the
iterative process

ﬂi = .lim Sj
j—o0

where

S0 = Bconst,ia
[

S+l = hi(bi—1 + sj(bi — bi—1))
exp(—(bi—1 + s;(b; — bi—1))hi/€)
1 — exp(—(bi—1 + 55 (b; — bi—1))hi/e)’

(1.101)

Then a; =1 — §; is determined from (1.74).

The numerical experiments confirm the fast of convergence of the it-
erative process (1.101). When calculations were performed for the model
problem, 2-4 iterations were need to obtain an accuracy of 1077.



The finite element method for convection-diffusion 49

2 Two-dimensional convection-diffusion problem

2.1 General remarks

2.1.1 Qualitative behaviour of the solution
Let (2 be the unit square (0,1) x (0,1) with boundary I". Consider the
Dirichlet problem

Lu=—-zAu+ (%(b(x)u) =f in 0, (2.1)
u=20 on I. (2.2)

Here, as usually, € < 1 is a positive small parameter. The functions b(z)
and f(z,y) are sufficiently smooth:

be C30,1], f(z,y) € C3(N). (2.3)

Under these assumptions the problem (2.1), (2.2) has a unique solution
in C?(02) (see, e.g., [88]).

The behaviour of the solution in the two-dimensional case is more com-
plicated than in the one-dimensional case. In addition to the exponentional
(regular) boundary layer, as in Chapter 1, there is a parabolic boundary
layer that arises near some parts of the boundary. The boundary layer of
this type is formed due to the fact that the characteristics of the reduced
problem (for £ = 0) is tangent to the boundary. Besides, corner boundary
layers can arise at the vertices of square.

Let the conditions

0< B <b(z) < By <00, z€][0,1]; (2.4)
f(0,0) = £(1,0) = f(0,1) = f(1,1) =0 (2.5)

be fulfilled. Then the solution of the problem (2.1) — (2.2) belongs to C*(£2)
([41]). Notice that the derivatives up to the third order are continuous and
hence are bounded on f2. But the constants in the estimates of this deriva-
tives depend on £ and increase indefinitely as € tends to zero. As for the
fourth derivatives, they belong to C(£2') for any subdomain 2’ C 2 with
positive distance from 4 corners. Therefore fourth derivatives are continuous
everywhere in 2 except 4 corners.

Let us introduce the notations

Fin:{(xay):x:()a y€(071)}7
ow = {(.’L’, y) z=1, ye (071)}7
th:{(l',y)ll'e(o,].), y:071}
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Fin Fout

Iig
Fig. 2. Domain £2.

Here the regular boundary layer arises near I',,; and the parabolic boundary
layer arises along I, (see Fig. 2).

Notice that in general the operator corresponding to the left-hand side
of (2.1) with the mixed boundary conditions does not satisfy the maximum
principle (for example, for ¥’ < 0), however the comparison principle still
holds. Later the comparison principle is applied to the differential operator
of the form

ou
=—cA — 2.6
Lu € u+bax+du (2.6)

where b(x) satisfies the assumptions (2.3), (2.4) and d(z) is a bounded
function on [0, 1] that is defined in each individual case.

Lemma 13. Let € > 0 be small enough. Assume that (2.3), (2.4) hold and
u,w € C2(2)NC(2) satisfy

|Lu| < Lw in (2, lu| <w on I. (2.7)

Then the estimate _
lu] < w on 2 (2.8)

is valid.
Proof. Introduce the functions

v(z,y) = u(z,y)exp(—oz)  and  2(z,y) = w(z,y)exp(—ozx) (2.9)
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with the constant

|d(z)|
=1 . 2.10
o=1+ max S (2.10)

Transform the differential operator £ into

(£8(2,)) = exp(=02)L (8(z,y) exp(02)) , (2.11)
that gives
o aé("ta y) 2
LO(z,y) = — Ad(z, y)+(b(x)—250)7+(d(x)+ab(x)—ea VB(z,y).
Assume that
e e (0,B:/(40%)]. (2.12)

Taking into consideration the definition of ¢ and the smallness of €, we

obtain
d+ob—¢eo® =—|d|+b+|d|—B1/2>B;1/2>0 on [0,1], (2.13)
b—2e0 >b—2B0/40”> =b— Bi/20 > B;/2 on [0,1]. .

From (2.7) we have

|ILv|< Lz in 0,
lv]| < 2 on I
The operator L satisfies the maximum principle (see [115]). As a conse-

quence we obtain
lv| < 2z on {2

Multiplying the last inequality by exp(ox), we get (2.8). O
When on I, we can estimate not a function u but its normal derivative
only, the comparison principle also holds.

Lemma 14. Let ¢ > 0 be small enough. Assume that (2.3), (2.4) hold, and
u,w € C*(NUI,) N C(2) satisfy

|Lu| < Lw in 02,

(2.14)
ou ow
lu| < w on I'\ I, <5, " Iy
Then the estimate _
lu] < w on 2 (2.15)

be valid.
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Proof. We introduce the constant o by (2.10) and assume that e satisfies
(2.12). We use (2.9) and consider the operator £ from (2.11). Then £ satisfies
the maximum principle again. Notice that on I}, we have 8/0n = £8/0y,
therefore

|ICv|< Lz in £,

o
on

0z
<+ on I,

< '\ I
lv| < 2 on \ Iig, <%

First we prove (by contradiction) the statement of the lemma in the case
of v = 0 and, consequently, z > 0 on £2. For this purpose we suppose that
there exists a point (z,y) € 2 where z(z,y) < 0. Assume that at a point
(x0,10) € 2 we have

2(zo,%0) = m!_%nz(x, y) < 0. (2.16)

Since [ satisfies the maximum principle, (zo,yo) does not belong to (2.
Because of the condition on I'\ I}, the point (z¢,y0) does not belong to
this part of the boundary. It remains that (xo,yo) € 4. Assume that, for
definiteness, yo = 1. Because of the condition on I}, we have

0z 0z
— 1) = — 1) > 0.
an(z.Oa ) ay(z.Oa )_ 0

If 0z/8y(x0,1) > 0 then due to continuity there exists an interval [1 — §,1]
in y on which this inequality holds. Use the Taylor expansion

(20,1 — ) = #(z0,1) - 62—;@0,77), nell—61]

It implies z(zg,1 —d) < z(zp, 1) that is in contradiction with (2.16). There-
fore

0z
@(1’.07 1) =0.
Applying this reasoning to the second derivative, we obtain
0%z
a—yQ(%o, 1) > 0.
In a similar way we get
0z 8%z
%(xo,l) =0 and w(xo, 1) > 0.



The finite element method for convection-diffusion 53

Using the above four relations in the expression (Zz) (zo,1), we obtain
(Lz)(20,1) < 2(20,1)B1/2 < 0.

This is in contradiction with the condition £z > 0 on {2 which follows from
the same condition on (2 and from the continuity of v and its first and
second derivatives. Thus, our assumption that v can take negative values is
wrong. Hence, z > 0 on £2.

Finally, using the last statement for the functions z — v and z + v, we
obtain z —v >0, z+wv > 0. Hence |[v] < z on {2 that implies

[u| <w on 2. O

2.1.2 The weak formulation

Multiply (2.1) by an arbitrary function v € H}(£2). By applying Green’s
formula we obtain the weak formulation: find u € HJ(2) such that for all
v € H} ()

a(u,v) = (f,v) (2.17)
with the bilinear form
ov
a(u,v) = eVuVv —bu_— | df? (2.18)
Q al’
and the inner product
(f,v) :/ fvdn. (2.19)
Q

Let us introduce the norm

[|v]|oo = sup vrai |v|.
o

We use the notations &) for a partial derivative 8/0z and 9 for a partial
derivative 8/8y. Similarly we denote the second derivatives by dag = 32(82)
and so on.

2.2 The scheme with the fitted quadrature rule for a problem
without parabolic boundary layers

In this section we consider the method for the problem (2.1) — (2.2) with a
solution free of a parabolic boundary layer near I3,.
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2.2.1 The differential problem
Agsume that

flz,y) =0  on Ii,. (2.20)

Then under conditions (2.4), (2.20) the first and second partial derivatives
of the solution of the problem (2.1) — (2.2) with respect to y are bounded.
Namely, the following estimates hold.

Lemma 15. Assume that 0 < € € 1 and (2.3), (2.4), (2.20) are valid for
the problem (2.1)—(2.2). Then we have

[u]loo + [|02u]|oo + [|B22u]l00 < €1- (2.21)

Proof. Assume that d = b'(z) and o is given by (2.10). Take the barrier
function
w(z,y) = coexp(ox) where c¢2 =2|fllco/B1-

Taking into consideration (2.13), (2.2), and (2.4) we have
Lw(z,y) 2 |fllo = |Lu(z,y)| in £,

w(z,y) > |u(z,y)] on I

Thus, applying Lemma 13 and using the upper bound of the function w,
we conclude that the solution u is bounded uniformly with respect to e.
To prove the estimate for the first derivative on (2, we differentiate the
equation (2.1) with respect to y and introduce the notation v; = Jau. Then
we get
E’Ul = an in .

Since u(0,y) = u(1,y) = 0, we obtain
v1=0 on I'\Ii. (2.22)
From (2.1), (2.2), (2.20) we have
Oov1 = 0ou=0 on Ii,. (2.23)

Now, setting ca = 2||02f||co/B1 and taking into account (2.13), (2.4), (2.22),
and (2.23), we see that the barrier function w(z,y) = ce exp(ox) satisfies
the relations

|Lv1| € Lw in L2,
oun ow

L <=2 on I,

< '\ I
|lv1] <w on \ Iig, on "
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Thus, by Lemma 14 v; is bounded on {2 by the function w which satisfies
the estimate w < ¢y exp(o) on £2. Hence, 8yu is uniformly bounded on 2
by a constant independent of &.

It remains to show that the second derivative ds2u is bounded. To do
this, we twice differentiate (2.1) with respect to y, put ve = Jasu, and to
use Lemma 13 with the same barrier function w(z,y) and with the constant
ez = 2[|022 f||oo/B1- O

Let us consider the following expansion of the solution

u = + po + &N (2.24)

Here vg is the solution of the reduced problem
& (b(z)wo) = f(z,y) in 2, (2.25)
vo=0 on I[j,. (2.26)

The function pg is the regular boundary layer component
po(z,y) = g(y)s(z) exp (—(1 — z)b(z)/e) (2.27)
where g(y) = —vo(1,y) and s(t) is the cut-off function s € C3([0,1]) satis-
fying (1.9). The solution of the problem (2.25), (2.26) has the form
Vg / fit,y)d (2.28)

Due to (2.3), (2.4) we have vy € C3( ). Because of (2.20)
vo(z,y) =0 on I[i,.
In view of the definitions of pg, g, s and with (2.20) we get
po(z,y) =0 on I'\Iou, po(l,y)=-vo(l,y) on Iou. (2.29)

To estimate the remainder term in the expansion (2.24) we need the
following lemma.

Lemma 16. Assume that € > 0 is small enough and (2.4) hold. Let s(x) €
C3[0,1] be the cut-off function (1.9). Then the function

1 (z) = 1 ; x exp(—(1 — z)b(z) /) s(x) (2.30)

with a fized constant x € (1,2) satisfies the inequality

L > ¢ (% + 62x) exp(—(1 — z)b(z) /) — ca (2.31)

for the operator L from (2.6) with the function d = V' (z) and some positive
constants ¢; and co independent of ¢.
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Proof. We introduce the notation

Ey(2,2) = exp (_M) .

e

Then we obtain the relation

o = 20 (2 -1) s 0) + 15500 (- 23 ) s@)Ea(a.9)

P P

1-—
+

Lo @)s@) s o) + (1
+ (2 + 1_Tx) as(z)s' (z)Er(z,¢e) + (1 — z)s" (z) Eq (z,€)

with bounded functions a;, az, as. First we consider the right-hand side of
(2.32) on the segment [2/3,1]. Remember that s = 1 and s’ = s" = 0 on this
segment. Due to the definition of » the coefficients 2/3— 1 and 1/5c— 1/
are positive. Since b(z) > B; > 0, the sum of the first and second terms in
the right-hand side of (2.32) has the lower bound

1 1-=z
C3 (g'i' 62 )El(.’l,',é‘).

To estimate the remaining two nonzero terms, we use the inequality

2% exp(—fz) < (a/B)" exp(—a), z €[0,00) (2.33)

which holds for each a > 0, 8 > 0 (see [4]). Setting t = (1 — z)/e and
t = (1—=2)%/e?, and using the fact that a; and as are bounded, we estimate
these two terms from below by a negative constant —c4. Hence we have

Lap1 > c3 (g + 16_29”) Ei(z,e) —cs on [2/3,1]. (2.34)

Now we consider (2.32) on the segment z € [0,2/3]. The right-hand side
can be expressed as

Ly = (a4(x) —+ §a5 (z) + 6%016 (x)) Ei(z,¢)

where the functions a4, as, ag are bounded on [0,2/3] x [0,1]. Ones, we use
(2.33) for t =1/¢ and a = 0,1, 2. This gives

Ly > —cs on [0,2/3]. (2.35)
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In a similar way for the expression in the right-hand side of (2.31) we obtain
the upper bound

1 1-
(E + 62x) Ei(z,e) <cg on [0,2/3]. (2.36)
Let us set
c1=c3 and ¢ =max{cq,c306 + 5} (2.37)

Thus, the estimate (2.34) involves (2.31) on the segment [2/3,1]. On the
remaining segment [0, 2/3] from (2.35)—(2.37) we get

1 1-
L1 > —c5 > cscg—c2 > 1 (E + 62x) Ei(z,¢) — co.

This estimate together with (2.34) completes the proof. O

Lemma 17. Assume that € > 0 is small enough and (2.4) hold. Then the
function

P2(z) = (1 — exp(—(1 — 2)By/¢)) (exp(oz) — 1) (2.38)
with the constant o from (2.10) satisfies the inequality
1
(Lipo) (z,y) > ZBI expozr on {2 (2.39)

where the operator L is given by (2.6) with d = b'(z).

Proof. Introduce the notation

(1- x)BQ) -

Ba(2,¢) = exp (— :

Then we obtain the relation

Ly = B?SEQ (z,€) (exp(oz) — 1) + 20 B2 Es(z,¢) exp(ox)

—e0? (1= Ex(z,¢€))) exp(ozx) — b%Eg (z,¢)(exp(oz) — 1)
+ bo (1 — Es(z,¢e))exp(ox) + b (1 — Ex(z,¢)) (exp(oz) — 1).

Due to the upper estimate of b(z) in (2.4) the sum of the first and fourth
terms is nonnegative. We discard it and use simple transformations:
Lipy > (—e0® + bo — |V]) exp(oz)
+ (20Bs + €0 — bo — |V'|) exp(—(1 — z) By /¢) exp(oz).
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For € < B1/(20%) in view of (2.10) the inequality
6(@)] < b(@)o /2
Then we have
e +b(@)o—|H ()| > %Bl, 20 By+e0” —b(z)o—|t! (z)] > ea2+%Bl > 0.

Hence we obtain

Laps > 331 exp(oz).

That completes the proof of the lemma.O

Lemma 18. Let £ > 0 be small enough and the operator L be defined by
(2.6) with a bounded function d(x). Then the function

P3(x) = (1 + %exp(—(l - x)Bl/Qe)) exp(ox) (2.40)

with the constant o from (2.10) satisfies the inequality

B2
Lipg > é exp(—(1 — z)B; /2e)expoz

B (2.41)
+?1 (1+exp(—(1 — )B1/2¢))expoz.
Proof. Introduce the notation
1-z)B
Ealo,) —exp (- 1505
and assume that B B
. 1 1
egmln{ﬁ,g}. (2.42)
Then we obtain the relation
Blbl B% Bla
(o)) = (G — s~ 7 ) Bulane) exploa)

+ (—e0® + bio +d) (1+ &' Es(z,€)) exp(oz).

Because of (2.4) and (2.42) the factor in the first term is estimated from

below: ) ) )
Blbl Bl Bla > Bl Bla > i

2¢2 42 € T 42 € ~ 82°
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The factor in the second term is evaluated from below due to (2.13):
—eo? +bho+d> By /2.

These three inequalities involve (2.41). O
The following Lemma, describes the behaviour of the remainder term in
the expansion (2.24) and of its derivatives.

Lemma 19. Let € > 0 be small enough and (2.3), (2.4), (2.20) be valid for
the problem (2.1)—(2.2). Then the remainder term n in (2.24) satisfies the
estimates

Inlleo < €7, (2.43)
|1z, y)| < ecs(l+ e lexp(—B;(1 - x)/2€)), (z,y)€ 2, (2.44)
(182270 < cog™". (2.45)

Proof. First we set d = b'(z) in (2.6). Then we get Lu = f. Simple calcu-
lations show that # in (2.24) satisfies

Ln= = ao@,y) + S (2,4 Alz,) +

= as(z,y)A(z,€) on 2 (2.46)

where
A(z) = exp(—(1 — z)b(z)/e)

and ag, a;, as are bounded functions on f2. Therefore the right-hand side
of (2.46) is estimated in the following way:

1 1-
|Ln| < c10 + (0115 + c12 62x) Az, ) (2.47)

with appropriate constants c1g, ¢11, and c¢12. Let us use the barrier function
w(z,y) = c1s91(2,y) + capha(z,y)
with constants
13 = max{ci1,c12}/er and  e1q4 = 4(cig + c2c3)/ By
where the functions 1, 19 are given in Lemmata 16 and 17. This yields
|(Ln)(z,y)| < (Lw)(z,y) in L2

Moreover, we have
w>0=|n on I.
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Thus, all the assumptions of Lemma 16 are satisfied and consequently (2.43)
holds. Together with the estimates for the functions 1, 9 this implies the
inequality

In(z,9)| < w(z,y). (2.48)
Moreover, since
w(0,y) =w(l,y) =0 Vye [0,1],
from (2.48) we have
[611(0,y)] < 15 and  [81n(1,y)| < cree™ . (2.49)

In order to prove (2.44) we differentiate (2.46) with respect to z. Intro-
duce the notation { = 917 and set d = 2b" in (2.6). Then we obtain

(ﬁC)(iII, y) =as (.’L', y)

1 1—2
+ Sai(@,y)A,e) + 5 as(e,y) A, )

(2.50)

where the functions as, a4, and a5 are bounded on 2. The right-hand side
of (2.50) is estimated in the following way:

(L) (2, y)| < err + crse ™ exp(—Ba (1 — z)/(2€)). (2.51)

Now we take the barrier function w(z,y) = c19¥3(2z,y) from Lemma, 18 with
the constant c19 = max{8¢ci7/B2, 2c19/B1}. We get

(L) (=, y)| £ (Lw)(z,y) in L2,
w>0=|¢| on Ii;, w>|[{| on IijyUIlgy.

The last inequality follows from (2.49). Thus, due to Lemma 13 we obtain
[(|<w on 02

that involves (2.44).
In order to prove (2.45) we consider the equality

1
Ooon = 5(3227«5 — 02210 — Ba2py) (2.52)

which follows from (2.24). Taking into consideration (2.21), (2.27), and
(2.28), we obtain (2.45). O
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2,541 Zi41,54+1

Zij Zit1,j

Fig. 3. The fragment of the triangulation 7.

2.2.2 Construction of the quadrature rule
For the implementation of the Galerkin method we construct an uniform
triangulation 7. To do this, we consider the grid

$/L:ih7 y]:Jh7 i7j:0717“‘7n7
with the mesh size h = 1/n for integer n > 2. We denote the set of nodes
by B
'Qh - {zij = (xiayj)a 7/7.7 = 07 17' .. 7n}7

the set of interior nodes by
2, ={zi; = (%,95), 4,5 =1,2,...,n—1},
and the set of boundary nodes by
Iy, = {z; = (=,y5), 1=0,1, 5=0,1,...,n; 1=0,1,...,n, j=0,1}.

Then the triangulation 7T}, is constructed by dividing each elementary rectan-
gle £2;; = [&4, Zit1] X [y, Yj+1] into two elementary triangles by the diagonal
passing from (z;,y;) to (®i+1,yj+1) (see Fig. 3).

At each node z;; € (25 we introduce the basis function ¢;; which equals
1 at the node 2;;, equals 0 at any other node of {2, and is linear on each
elementary triangle of 7j. Denote the linear span of these functions by

H" = span{;; }:];11

With these notations, we arrive at the Galerkin problem: find u® € H" such
that
a(ul,v™) = (f,v") Vol € HM (2.53)
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But the solution of this problem is unstable and has poor accuracy be-
cause of the boundary layer component ([9]). In the same way as in one-
dimensional case, we provide the stability and improve the accuracy by the
special approximation of the bilinear form a with the fitted quadrature rule.

Let TZ(;) (or Ti(;‘), respectively) be an arbitrary triangle of 75 with the

vertices zjj, Zit1,j41 = (Tit1,Yj+1), and 2ip1,; = (Tiy1,Y5) ( zig1,; =

Zi,Yi11), respectively) as in Fig. 3. We denote the elementary part of the
Yi+

bilinear form (2.18) on an arbitrary triangle T' = TZ(;) or T = Ti(;‘) by
ar(u,v) = / ((ebhu — bu) v + e02udav) df2. (2.54)
T

In principle, freezing the coefficient b on a triangle T is enough to perform
the integration exactly. But the accuracy of this formula is unsatisfactory
because of the boundary layer function pg. Therefore, we try to get another
quadrature rule.

Thus, we apply the three-point quadrature rule on a triangle T = Tl.(jl)
for the approximation of the bilinear form (2.54):

h2
| s@)ae ~ 5 (augles) + aniglair. )+ asgain ).

Then an elementary contribution of the algebraic bilinear form can be
expressed as

2

; (wh, ") = ?((ealwh - bi(aliwh(zi,j) + a2iwh(zl'+1’j)

v (2.55)
+ a3iwh(zl'+1’j+1)))al’l}h + ea2wha2uh).

From here on we use the notation b; = b(z;). We choose the weights ay,;
from the following two requirements. Firstly, in order to guarantee the first
order accuracy for smooth functions, the quadrature rule have to be exact
for constant functions. This immediately gives the equation

Q15 + g +ag; = 1. (2.56)
Secondly, we try to minimize the difference

aT(pO,Uh) - a’l’lz"(péavh)a Uh € Hha (257)
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for the regular boundary layer function pg and its piecewise linear inter-
polant pé € H". For this purpose we put

/ (e0,G — bi¢;) O1v"d 02
' (2.58)

h2
=5 (581&! = b; (€] (2i,5) + @2l (ziv1,5)@3il] (zig1,541)) )alvh
for the function
Gi(z) = exp (—(1 — 2)bi/e)

and its piecewise linear interpolant ¢/ (z,y) on TZ(;)
To diminish the difference stencil, we put az; = 0. Thus, for the parame-
ters of the quadrature rule we have the system of linear algebraic equations

1
a1; + exp (0;)an; + exp (0;)az; = - (expo; — 1),
K]

ay; +oag; +ag; =1, (2.59)

ag; = 0
where o; = b;h/e. It has the unique solution

_ expo; 1 1 1
ay=7——————, 0=_——

_ ; = 0. (2.60
(expo; — 1) o o; expo;—1’ i (2.60)

With the weights obtained we rewrite (2.55) in the following form:

K b
h h by __ h h
arp W) =5 (expali — (Wiy,; — Wiy exp o) dyv”
+ eaQwhawh). (2.61)

From here on we use the notation v;; = v(2;;) for any function v(z,y).

In a similar way on the triangle Ti(;‘) we obtain the following approxi-
mation of the bilinear form (2.54):

h? b; vl
?( (Wi j1 — Wy €XD O'i)a—

a’lr;w‘(ft) (wh7 Uh) =
’ (2.62)

expo; — 1
42O
an oy )
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To integrate the right-hand side, we use the simple quadrature rules

1
”~ fodm Zh?(fijvij + firr,iVi + fir1grvie, ),
ij

1
) fod = 6h2(fi’j+1'ui,j+1 + fir1,jVi41,5 + fir1,j410it1,541)-

T
ij

This gives the elementary terms of the approximation of the right-hand side
on an element T € Tp:

1
ooy (V") = 6h2(fijvij + fit1,5Vit1,5 + firr,j410i41,541),
v (2.63)

1
hy (") = ZB2(fi Vi + Fijt1Vig+1 + Fibl, j+10i41,541)-
T5; 6

Summing the elementary terms like (2.61), (2.62), and (2.63) over all
T € Tp, we obtain the approximations of the bilinear and linear forms

a”(wh, o) = Z al(wh,v"), (2.64)
TET
oty = Y .
TeTx

Now we come to the ’fitted’ Galerkin problem: find u® € H" such that
a(uh, o) = ") Vol e H. (2.65)

This problem is equivalent to the system of linear algebraic equations

i f bi_ b;h
(Lrut)s; = ul (h( b; exp o + 1 ) +2€) —ul, i

expo; —1  expoj_1—1 Jexpo; — 1
b~_1hexpa~_1
—ul e — —eul;  —eul (2.66)

J expo;—1 — 1
= fiyh?, 4,5=1,2,.,n—1,

where ul; = 0fori = 1,.,n—1and j = O,norforj =1,.,n—-1
n—1

and ¢ = 0,n. The parameters {uf] ii=1 give the solution of the problem

(2.65)

n—1
uh =3 ugei. (2.67)

3,5=1
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Enumerate the remaining unknowns and the equations in (2.66) from 1
to (n — 1)? in the same way (for example, in the lexicographic order) and
rewrite the system (2.66) in the vector-matrix form

AN =F (2.68)

where

N 3 h h h T
U= (u1,17“‘7u1,n—17u2,17'"7un—1,n—1)

F= (fh(g01,1), “eey fh(801,n_1), “eey fh(gon—l,n—l))T'

Notice that the matrix A" is irreducible [21], diagonal-dominant along columns
and strongly diagonal-dominant along columns for ¢ = 0,n. Consequently,
AP ig an M-matrix and the system (2.66) satisfies the difference comparison
principle and has a unique solution [21].

?

(2.69)

2.2.3 Properties of the discrete problem. The convergence result

Now we investigate the approximating properties of the discrete problem
(2.65).

Lemma 20. Let u be a solution of the problem (2.1), (2.2) with the condi-
tions (2.3), (2.4), (2.20), and u” be a solution of the discrete problem (2.65).

Assume also that
e < h. (2.70)

Then the estimate
heoh _ o1
a (u —u 790)
| i)l (2.71)
< ch*(e + h+exp(-Bi(1 — 2441)/2¢)) Vi,j=1,.,n—1
holds.
Proof. Using the expansion (2.24) we have

la"(uh — u’, 0i;)| < 1 (0ig) = Flei)| + lalu, ij) — a*(u', @ij)|
<1 (pis) = Flip)| + la(vo, pij) — a™(vg, i) (2.72)
+ la(po, vi;) — a"(p, ij)| + la(n, iz) — a" (0", @ij).

Here v{, pl,n' € H" are the piecewise linear interpolants of the functions
vg, Po, M and i,7 =1,...,n— 1.
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We evaluate each term in the right-hand side of (2.72). First we estimate
each expression on an elementary triangle T € 7, and then we get the
estimate over the whole support of ¢;;. It is equivalent to the estimate over
0.

Let us take T' = Ti(jl). Consider the expression

h2
Fr = gfij —/ foi d02.
T
Since f € C2%(£2) we use the Taylor formula
f(il»',y) = fl] + h7T1(1,', y)7 |771| <¢ on T.
This gives
1
|Frr| = |h/ mipi; 2| < Zerhd.
T 6

The same estimate is valid on any other elementary triangle T € supp ;;.
Taking the sum over the whole support of ¢;;, we obtain

|72 (ij) — fpig)] < erh®. (2.73)

Because of different smoothness of the solution in the z- and y-directions,
we expand the bilinear forms (2.18) and (2.64) as a sum in the z- and y-
directions:

a’(ua U) =ay (ua U) +as (ua U)a
ol (uh, ") = al (u”, ") + al (", 0").
Then for the elementary bilinear forms (2.54) and (2.55) we get

ar(u,v) = a17(u,v) + asr(u,v),
a’l’lz"(uha Uh) = a’{zT(uha Uh) + a’gT(uha'Uh)

where

ai7(u,v) = / (e01u — bu) v d!?2,
T

aor(u,v) = 5/ O2udsv df2,
T
and

a?T(wh,vh) = (ealwh —-b; (aliwh(zij) + a2iwh(zz'+1’j)) )alvh,

2
2
2

h
alr(w” o) = ?eagwhagvh.
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According to Lemma 15 the solution is sufficiently smooth in the y-
direction, then it is easy to get the estimate of the difference

|las (u, ¢ij) _‘12( a%])l (2.74)

Consider the inequality

las (u, pij) — af (u', ij)| < laa(u, ij) — az(u’, pi;)] 2.75)
+las(u', pi;) — al (u', 0i5)|

and estimate both terms in its right-hand side.
OnT = Ti(;‘) we have

A = % / & (ou — Bou’) d02
T

Use the Taylor expansion at z;;

w(@i, yjr1) = w(@i, y;) + hdau(zi,y;) + Bom (2i,y),
dou(z,y) = O2u(®s,y;) + hma (@i, y)
where |71| < ¢g and |m2| < g on T due to the estimate (2.21). Since u! is
the piecewise linear interpolant of u, T' the equality

a2u1(x,y) — U(.’L'i, yj-i—l)h_ ’U/(.’L'i, yj)

= 32U($z,y]) + hﬂ-l (xia y)
holds. Hence we have |8au — 82uf| < cgh. Thus we obtain
|A(u)| < 6106h2.

The same contribution into the error comes from the triangles TZ(JU), TZ(?) 1

T(l) j—1> and T(l) 1,;- On the triangles T() and Tl(ui . the derivative Oz¢;;
equals ZE€ro and therefore these trlangles do not make a contribution into
the error. As a result, we have the following estimate of the first term in the
right-hand side of (2.75):

las (u, pi;) — a2 (u’, ;)| < croeh®.

Since the approximation of the second derivative gives the exact expres-
sion for linear functions, the second term in the right-hand side of (2.75)
equals zero on any T' € T;. Finally, in the y-direction we have

laz(u, ;) — ab (u', pi;)| < cr0eh®. (2.76)
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To obtain the estimates in the z-direction, on a triangle T € T} we
introduce the intermediate bilinear form a{T(u, v) obtained from a;r(u,v)
by freezing the function b(z) at the point x;:

a{T(u,v) = / (edu — byu) O1vdL2. (2.77)
T
Then for an arbitrary function v we have the estimate

la1 (v, @i5) — a(v", 0i5)] < las (v, @i5) — af (v, 035)) 2.18)
+|a’1 (U 901]) - a’l( aSOzJ)l + |a'1( Iagoij) - 0'1( aSOz])l

First with the help of (2.78) we obtain the estimate for v = vy. On
— 7 :
T =T;; we consider

Bg) = a1T(U0,90i]) G{T(UO,%J h/ ))vo df2.
Expand b and vy in the Tailor series at z;:
b(z) = b; + (z — )b (z:) + h*ms(2),
Vo (.’L', y) = Vo,ij + h7T4(.’I,', y)
Due to the smoothness of b and v, the functions n3(z) and m4(z,y) are

bounded on T'. As a result, we have

h2
B = =5 vo0,isb (@) + Wms,  |ms| <en.

In a similar way on Ti(i)l’ ; We obtain the equality
2

! h
Bhi=Tg

with the same constant ¢;; independent of €, h, i, 5. Therefore due to the
smoothness of b and vy we have

vo,i—1,0' (®i—1) + B, |76| < i1

IBY +BY, | < 2e11h?.

i—1,j

The same contribution comes from the triangles T(u) 7, and T(ui j—1- On
the triangles T( % and T() j—1 we have O1pi; = 0 and consequently these

triangles do not make a contrlbutlon into the error. As a result, we get

|a1 (vo, 9ij) — af (vo, pij)| < deirh®. (2.79)
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Next according to (2.78) we evaluate the difference
laf (vo, 015) = af (vg, 015)]- (2:80)

OnT = Ti(jl) we introduce the notation
1
Cz(;) = _E . (5(81110 — 81116) bt bi(’Uo bt ’Ué)) d.Q

Due to the smoothness of vy as well as the definition of a piecewise linear
interpolant, the equality

Yo,i+1,j — V0,i,j

h

holds. Here |m7(z,y;)| < ¢12 on T. Moreover, we have

al’Ué(.’L',y) = 231U0($iayj)+h777($,yj)

Oivo(z,y) = O1vo(@i, y;) + hrs(z,y)
where 7g is bounded on T'. Hence the estimate
|O1vo — B1vg| < cish (2.81)
is valid. For functions vy and v§ on T use Tailor expansion in the form

vo(z,y) = vo(®i,y;) + (& — 2:)01vo(Ti,Y5) (2.82)

+ (y — yj)P2v0(2i,y;) + B*7mo(x,y) where |mo| <eu on T,
v (@,y) = vo(xi, 45) + (& — 2:)01vg (5, 95) + (y — )2 (4, 3)-
Due to the inequality (2.81) on T, the similar inequality in the y-direction
|82v0 — Bav| < cish,
and (2.82) we get the estimate
lvo — vg| < c16h>.
Then we have

ICD| < errh®(e + ). (2.83)

The same contribution comes from the triangles Ti(i)l, i T'z(:;)—l’ and Ti(fi’ i1

The triangles Ti(ju) and Ti(i)l’ -1 do not make a the contribution into the error
because of equality 01¢;; = 0.
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From (2.83) we obtain

laf (vo, pi;) — af (v], i) < ders(e + h)R2. (2.84)

To complete the proof of the estimate (2.78) for v = vy, we evaluate the

term |a{(vé,g0ij) —al(d,pij)- On T = Ti(jl) we have

b; h?
Dg') = ﬁ( / vg df2 — 5 (@130, + a2iv0,i41,5))
T

b;h
= ——(v0,4,j + V0,i+1,j + V0,i+1,j+1 — 301i0,s,j — 302i0,i41,5)-
6

Use the Taylor expansion (2.82) for vg,;+1,; and vo,i+1,j+1 near (z;,y;). Since
ay; +ag; = 1, we get

b;h2
DY) = ZT((? — 302:)01v0,1,5 + Dav0,i,5) + Bmoi;

. . « . l .
where 7y ;; is a function bounded on T'. In a similar way on Ti(_)1 j we obtain
9

the expression

b;h?
is1y =~ (2= 302,i1)01v0,im1,5 + Bavoio,g) + Bomo i,

with the value g ;_1 ; of the function w9 bounded on T'.
Consider the function

i exp(t) 1
0= 7))

This function approaches zero as t — 0 or ¢ — 400. Since it is continuous
on the interval (0, 00), it is bounded

la(t)| <ectg on  (0,00)

with a constant c¢;9 independent of h, €, z, t. Taking into account

61(12 (.’IJ) == Zli Ezi a(hbl (.’IJ)/E),

(2.4), and the smoothness of b and its derivative, we get

|O1aa ()| < ciolb’||co/ B
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Since the functions b, as(z), 81vg, O2vg have bounded derivatives with
respect to z, by the mean value theorem we get

|D(l) +D(l)1 | < 620h3

The same contribution comes from the triangles T ]) 1 T(ui j—1- The tri-

angles Tz(] “) and Ti(i)l’ j—1 do not make a contribution into the error because
of the equality 01¢;; = 0. As a result, we get

laf (v, @ij) — al (v, pij)] < 2e20h®. (2.85)

From (2.78) together with (2.79), (2.84), and (2.85) we obtain the esti-
mate of the second term in (2.72)

a1 (v, wij) — af (v§, vi;)| < 2ca1h?(h + €). (2.86)

Now let us obtain the similar estimates for the pair py and p{. To do
this, we consider the third term in (2.72). On T = Ti(jl) we have

EZ(Jl) = ar(po, pij) — (po, ©ij) - / ))po d12.
Since |b; — b(z)| < h||b'||c Oon [2i,7511], We get
B | < ex / |pol 2. (2.87)
T

Let us examine two variants of the behavior of the function g(y) = —wvo(1, y).

First assume that g(y) changes its sign on the segment [y;, y;+1]. It involves

lgW)| < hllg'll,c on [yj,yj+1]- Therefore |po| < c23h on T and we have
|ED| < cash®. (2.88)

Next we assume that g(y) does not change its sign on the segment [y;, y;+1]
and is, for example, nonnegative. Then by the mean value theorem we get

h2 * *
[ mlaa = [ mwae="p,0) (2.89)
T T 2
where (7*,y*) € T. Because of (2.4) we obtain

po(T*,y") < 25 exp(—(1 — zit1)B1 /e). (2.90)
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Combining (2.87), (2.88)—(2.90), we get the estimate
|ED| < caoh®(h+ exp(—(1 — zi41)B1 /€)).

The same contribution comes from the triangles T\, o T(u) ) ,,and T o1

On the triangles Tz(] ), T( )1 j—1 Wwe have d1p;; = 0 and consequently the

contribution of these trlangles equals zero. As a result, we have
la(po, #ij) — af (po, 0ij)| < carh®(h + exp(—(1 = zi11)Bu/e)).  (2.91)

Now we evaluate the difference af (o, pi;) — al(p§, ¢i;). Let us take
T= Tl.(jl) and introduce the function

p(z,y) = g (y) exp(=(1 — 2)bs /e)
where ¢! is the piecewise linear interpolant of g. According to the construc-
tion of the quadrature rule, we have
of (b, i) = ai (0, 0ig)-
Thus, on Ti(.l) we obtain the representation
! R
G() = alT(Po,SOzg) G?T(Pé,%j) = G{T(Po, ®ij) — G{T(P, ®ij) (2.92)
1 ) ) .
= _E/ (€01 (po — p) — bi(po — p)) dL2.
T

Taking into account the behavior of the functions pg and p we conclude that

the estimate of G;; is worst near = 1. Consider this case in detail. Assume
that z; > 2/3. Then we get

lpo — Al = 9(y) exp(—(1 — z)b(z) /) — g (y) exp(— (1 — z)bi/e)]|
<lg(y) (exp(—(1 — z)b(z)/e) — exp(—(1 — z)b; [e))|  (2.93)
+lg(y) — " (v exp (= (1 — z)bi/e).

To estimate the first term we take into account the fact that the function
texp(—t) is bounded for ¢ € [0, 00) and use the mean value theorem. Then
we obtain the upper bound

caghexp (—(1 — zi41)B1/2¢).

Since the interpolant g’ approximates g with the second order accuracy, we
have the estimate of the second term in (2.93):

|p0 - ﬁl < ea9h (h + exp (—(1 — .’I,'H_l)Bl/QE)) . (294)
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Using similar reasoning for the first derivative, we get

"y @ 2 ) e (-1 - abia)e)

£

100~ 8001 = o) (

- ') L exp (~(1 - )bife) |
< "0 ) | exp (~(1 - 2)b(z) ) ~ exp (~(1 — 2)bi/e)|

; (2.95)
+12 (9()b(x) — g" ()bs) | exp (= (1 — z)bi/e)

— % exp (~(1 - 2)b() /)

1
+ o)
h
S C30g €Xp (—(1 - :I,'i+1)Bl/26) .
Combining (2.94) and (2.95), we have
1G] < ea1h? (h+exp(—(1 — zi11)B1/2)) for z;>2/3.  (2.96)
Now assume that z; < 2/3. Then we have
exp(—(1 — 2)by (z*)/€) < c306® < ezzh? for all z* € [z, zi4].
This gives

lpo — Al < |g(y)]s(x) exp(=(1 — 2)b(z)/e)
+ 19" (®)ls(2) exp(=(1 = 2)bi/e) < czah®,
8100 — 815] < csse™ (lg(y)ls(x) exp(~ (1 - z)b()/e)
+ 19" (®)ls(2) exp(=(1 = 2)bi/e)) < esoh.

Therefore for z; < 2/3 the following estimate is valid:
1G] < exrh®.

Thus, (2.96) holds for all z; € (0,1). The same estimates are valid for the

triangles Ti(i)l’j, Ti(,?)—h Ti(iq,j—l' The contribution from the triangles Ti(;‘)

and Ti(i)l’ ;j—1 is zero since the derivative 01 ¢;; equals zero on these triangles.
Therefore we obtain

|a{(,00,90ij) —al (g, pij)| < essh®(h +exp(—(1 — z;11)B1/2€).  (2.97)
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Finally, we need to obtain the estimate for the last term in the right-hand
side of (2.72) for the functions n and #’:

|al 7779011) —a (77 79011)|

OnT = Ti(jl) we consider

Hg) = a17(n, ¢i5) — air (0, 9i;) -7 / z))n dL2.

Because 7 is bounded on T according to Lemma 19 and b is sufficiently
smooth, we get

‘Hz(]l) ‘ S C39h2.

The contribution from the other triangles with the vertex z;; = (z;,y;) has
the same order. Therefore we have

Jax (n, 015) — o (1, 035)| < desol?.

Now we estimate the difference ‘a{ (n, @si5) — a{ (nI,QOij)‘ .OnT= TZ(;) we
have 1
1 =~ [ s - o)~ i - ' ae
Due to (2.44) we get
1011] < ca0 (1 + e exp (—Bi(1 — zi41)/2€)) on T. (2.98)

Because of the Lagrange theorem |01n!(z,y)| = |61n(t,y;)] on T. It in-
volves the same estimate as (2.98) for both expressions. Under (2.70) we
obtain

eloin —0in'| < eae (14 e " exp (—Bi(1 — z441)/2€)) - (2.99)

Further, in order to estimate the difference n — 7’ on T we use the Taylor
formula for 5 in the form

n(@,y) = nij + (y — y;)0n(2i, y;) + hrio(2,y;)- (2.100)
Here because of (2.44) and (2.45) the function ¢ satisfies the inequality
Imi0] < caz (1 + he™ + e exp (—Bi(1 — 3i41)/2€)) (2.101)
on T'. Moreover, we have

;) Nit1,5 — Tij Nig+1 — Ny T

n'(z,y) =mi + (= - +y—y) " on
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Using (2.100) for n;41,; and 7; j4+1, we obtain
In—n'| <eash (1+e'h+e ' exp (—Bi (1 — z441)/2¢)). (2.102)
Combining (2.99) and (2.102) we get on T

|Ii(l)| < 644}; (e + h +exp (=Bi(1 — zi11)/2€)). (2.103)

The same estimate is valid for the triangles T\”, ., T{*) ,, T j_1- The

—1,57 ~4,5—17 i
contribution from the triangles Ti(j “ and Ti(—)l, j—1 equals zero. Therefore we
have

h2
|a1 (n, @) — al( ,gom)| < C45? (e+ h+exp(—B1(1 — z;41)/2¢)). (2.104)

It remains to evaluate the difference

laf (0", 015) — di (", 35)]. (2.105)
OnT Ti(jl) we have
b. h2
Ji(;) =—=([ n'd2 — —(awumij + a2init1,;))
hJr 2
_biih
=776 ——(Mij + Nig1,5 + Mig1,541 — 300505 — 3Q2iMNiy1,5)-

Use the Taylor formula in the form (2.100) for 7;41,; and 741,41 and the
equality aq; + as; = 1. Since ay4, ag;, and b(z) are bounded, we have

b;h?
JZ(Jl) = Taﬂ]i]‘ + h27T11 (.’L',y)

with the estimate of 711 (z,y) similar to (2.101). Considering (2.105) on the
triangle T! ]) 1, we get

U U h2
I8 + I8 | < cio (e +h+exp (~Bi(1 - 2i1)/2)).

The triangles Ti(iq,j—l and T( v 7, make the same contribution. The contri-

bution of the triangles Tz(] u) and Ti(—)l, j—1 equals zero.
Therefore for (2.105) we get

G’{T (nIa wij) — G?T(nIa ©ij)
) (2.106)

h
< Car (e+h+exp(=Bi(l - zi41)/2€)) .



76 Karepova E.D., Shaidurov V.V.

Combining (2.73), (2.76), (2.86), (2.97), and (2.106), due to (2.70) we
obtain the estimate (2.71).0

The next result gives the barrier functions to estimate the right-hand
side of (2.71).

Lemma 21. Let us assume that
e<cah (2.107)

with a constant c,. There exist the mesh functions ©® and ¥* on (2, with
the properties

" <ex in O, (2.108)
[¥"| < esh in 2 (2.109)

such that
LMo >R in (2, (2.110)
e">0 on Iy (2.111)

and

Lhp" > h2exp (=B1(1 — zi11)/26)  in (4, (2.112)
Y" >0 on I (2.113)

Proof. Consider the expression

1 ( biexp(si)  bi—1exp(si—1)
h \exp(s;) =1  exp(si—1) —1

(2.114)

where s; = b;h/e. It can be thought as the difference of the values of the
function f(s) = (sexp(s))/(exp(s) — 1) at neighboring nodes of the grid.
Then by the mean value theorem we have

€
h?

13
= h?

siexp(si)  si—1exp(si—1)
exp(si) —1  exp(si—1) — 1

"(8")si — si—1l

(2.115)

Bih Bah
e e |’

< fl(s*)W (z*) < s where s* € [ ,
We take into account the estimate

|s; — si—1| = g|bl —bi—1| < gb'(x*)h, z* € [2i-1,Ti]-
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Thus, the difference (2.114) is bounded.
Now we consider the expression

1 b; b1
— - . 2.11
h (exp(si) -1 exp(s;—1) — 1) (2.116)

In a similar way we introduce the function f(s) = s/(exp(s) — 1). Using the
mean value theorem we get the estimate for (2.116)

£ 8; Si—1 € prp wx
- - < = R
h? lexp(s;) — 1  exp(s;—1) — 1‘ — h? F(s™)si = sil (2.117)
Bih Bsh '
< (8™ (2**) < cg where s** € [%, %] , T E [Tim1, ;).

Thus, the difference in (2.116) is also bounded.
Put o = 4(cs + ¢¢)/B1 and introduce the function ¢” by

h h
¥ij ~¥i-1,j

A =cexplox;), i=1,.,n; Vi=1.,n-1

%6, =0,

We want to show that " satisfies the conditions (2.110), (2.111). Rewrite

1
ﬁthoh in the form
_bi—1exp(si—1) o bi—1
h(exp(sj_y) — 1) 17 h(exp(si—1) — 1)
(2.118)
bi exp(si) h bi h
- h (exp(s;) — 1) Yii T g (exp(s;) — 1) Pit1j-
Rearranging the terms in (2.118), we have
b; exp(s;) h A b; N .
h (exp(si) _ 1) (901']' 901'_1,]') h (exp(si) _ 1) (901'4-1,]' Qoij)
1 ( biexp(si)  bi—1exp(si—1)) 5
- - Y 2.119
+h (exp(si) -1  exp(si—1)—1 Yi-1 ( )

_1 bz _ bi—l h
h\exp(s;) =1 exp(s;1)—1) ¥

Take into consideration the inequalities exp(—b;h/e) < exp(—Bih/e) <1/2
for ¢; = B1/In(1/2) in (2.107) and exp(oh) > 1. Then the difference of
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two first terms in (2.119) has the lower estimate

bi exp(s;) bi
WU exp(0z;) WU exp(0Tit1)
= Ma (exp(ox;) — exp (ox; + ho — b;h/e))
exp(s;) — 1

1 1
> §Ubi exp(oz;) > 5031 exp(ox;).

In view of the definition of ¢ the first term in (2.119) is twice as much
as the remaining two terms, hence the conditions (2.110), (2.111) are valid.

Show that the condition (2.108) holds for the function ¢”. From the
definition of ¢" we have

| i i
w = aZexp(axk) = oexp(oz;) Zexp(—kah).
k=0 k=0

Then " has the following representation

goi?j = ho exp(ox;) Z exp(—koh).
k=0

The sum in this expression is the partial sum of a geometric progression,
hence we get the estimate

5 ho exp(ox;)

Yig =9 exp(—oh)’

For sufficiently small h the following inequality holds:

o

1 —exp(—oh) —
It can be proved using the Taylor expansion of the function f(t) = 1 —
exp(—t) at zero. Then we have gofj < 2exp(oz;) on (2. The proof of the
properties of go?j is complete.

Now consider the function " defined by

ho_ b
Y5V _ (B = i)/20) V= 0L =0
In order to prove the properties (2.112), (2.113) we consider
1 b;—1 exp(s;—1)
_Lh h_ _ % i ho
h2 11[} B (eXp(Si_1) — 1) 11[}1—1,]

(2.120)

bi_1 b; exp(s;) no b
- (h (exp(si—1) —1) = h(exp(s;) — 1)) Wi h (exp(s:) — 1)¢z+1,]-
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For convenience we rearrange terms:

b; exp(s;) h A b; N .
R (exp(s;) — 1) (35 — ¥isa) — B (exp(ss) — 1) (Wi, — i)
1 ( biexp(s;))  bi_r1exp(si_1))
+ 5 (exp(si) 17 ep(sa) - 1) Vio1,j (2.121)

_1 bi - bi Pl
h \exp(s;)—1 exp(s;))—1/"*
Take into consideration the inequality exp (—B1h/2e) < 1/2 which holds

for € < h B1/1In4. Then we estimate the difference of the first two terms in
(2.121):

% exp(—B1(1 — z;41)/2e) — exp(:# exp(—Bi1(1l = Ziy2)/2€)

= % exp(—B1(1 — ziy1)/2€) (1 —exp (%@h B %))

1
> §bi exp(—B1(1 — z;41)/2¢) > croexp(—B1(1 — zi41)/2¢)

with the constant ¢19 = By /2.

The coefficients of ¢} , ; and ¢}, ; are bounded on 2, due to the
estimates (2.115) and (2.117), respectively. Since the functions 1/1?_1’]. and
’l:[}zh-i-l,j themselves are of the first order with respect to h, we obtain the
estimate (2.112).

Next we examine the condition (2.109) for 1". In the same way as for

the function ", we have

Vi =g + hexp(—Bi (1 — zi41)/2€) Z exp(—kB1h)/2€)
k=0
1

1 —exp(—B1h/2e)

< hexp(=Bi(l — 2i41)/2€)

<cshexp(—=Bi(1 —z41)/2€) < cgh on (25

Thus, the function 1" satisfies (2.109). This completes the proof. I
Finally, using Lemmata 20 and 21, we formulate the main result.

Theorem 22. Assume that (2.4), (2.20) hold. Then there exist constants
ho and ¢y independent of h and € such that ¥ h < hg and for € < h the
solution u® of the problem (2.65) satisfies the estimate

max [u — u”| = ||u’ — u"||con < c1h (2.122)
2n
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where u is the solution of the problem (2.18), (2.19).
Proof. Introduce the function
N T
with ©* and ¥" from Lemma 21. From (2.110) — (2.113) we get

|IL*¢"| > B2 (h+exp(—Bi(1—i31)/2)) in 2,
|¢"| >0 on Ip.

Then by Lemma 21 the inequality
|p"| < csh on 02y

holds. In view of the definition (2.66) of the operator L" and by Lemma 20
we have

|Lh(uh - UI)ijl < csh?(e + h+exp(—(1 — z;41)B1/2¢€))
< LM¢M)i; Vii=1,.,n-1

Therefore

" (i, y5) — u(@i,95)] < ch
forl1<i<mn—-land1<j<n-1Fori=0nandj=0,.,nor
for j = 0,n and i =0, ...,n the difference u”(z;,y;) — u(=:,y;) equals zero.
Since u! (z;,y;) = u(=i,y;), we have (2.122). O

2.3 Construction of the method for the problem with regular
and parabolic boundary layers
In this section we reject the restriction (2.20) and consider the convection-

diffusion problem whose solution has regular and parabolic boundary layers.

2.3.1 Properties of the differential problem.
Consider the problem (2.1), (2.2) under the conditions which are stronger
than (2.3) and (2.5) in order to simplify the proofs. Let

be C™0,1], feC% (), ae€(0,1), (2.123)

and
=0 in vicinities of four corners of f2. (2.124)
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To describe the behaviour of the solution for small £, we use the following
expansion of the solution

u=1up+py+en on . (2.125)
Here ug is the solution of the ’partially reduced’ problem

Lpar’u,o = —edsoug + O (bUO) = f in (2, (2126)

wp=0 on I'\I,yu. (2.127)

Five consistency conditions of orders 0 — 4 are fulfilled for the data in

this parabolic-type problem [34]. It guarantees that 8;:1 8§2u0 are Holder-

continuous for 2k, + ks < 8. As for the derivatives 8{“82271, then five condi-

tions of orders 0 — 4 are fulfilled for the data in initial elliptic-type problem

[35] and these derivatives are Holder-continuous for k; + k2 < 8. The func-
tion pg is the regular boundary layer component

po(z,y) = g(y)s(z) exp (— (1 — z)b(z)/e) (2.128)

where
9(y) = —uo(Ly) on [0,1] (2.129)
The cut-off function s(z) € C*[0,1] was introduced in (1.9). The function
up in (2.125), unlike the analogous component in (2.24), is not smooth in
the y-direction. But it still is sufficiently smooth in the z-direction.
The operator Ly, satisfies the comparison principle. We formulate it
for the family of differential operators

Lparv = —€022v + bO1v + dv (2.130)

where b(z) satisfies the conditions (2.3), (2.4) and d(x) is a sufficiently
smooth bounded function which will be specified further in each individual
case.

Lemma 23. Assume that € > 0 and (2.4) holds. Assume also that u,w €
C?(2) N C(N) satisfy the inequalities

| Lpartt| < Lpgrw  in L2, lul| <w on I'\ I,y  (2.131)

Then we have _
lu| < w on f2. (2.132)

The lemma can be proved in the same way as Lemma 13 for the operator
L.

The following lemmata give some estimates of the functions from (2.125)
and of its derivatives, that are required to construct and to investigate the
discrete problem.
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Lemma 24. Assume that € > 0 is sufficiently small and (2.123), (2.124),
(2.4) hold. Then the estimate

du(z,y)
Oyt

‘§c1(1+6_j/2B(y)), §i=1,2,3, on £ (2.133)

is valid where B(y) = exp (—yy/v/€) +exp (—y(1 — y)/+/€) with a constant
v > 0.

Proof. Set d(z) = ¥/'(z) for the operator £ introduced by (2.6). Let o
be defined by (2.10). Assume that £ satisfies the condition (2.12). For the
barrier function

w(z,y) = c2 (1 — exp (—vy/VE)) exp(oz)
we put ¥ = 1/B1/2 and ¢2 = 2||f]|eo/B1. According to (2.13) we have
(Lw)(@,y) = c2v” exp (—vy/VE) exp(oz) + (~e0” + ob(z) + d(2)) w(z,y)

2 |(Lu)(z,y)| for (z,y) € 12,
w(z,y) > u(z,y)| =0 for (z,y)el.

Thus, applying Lemma 13 we see that the solution u is bounded on f2.
Besides, due to the equality w(z,0) = 0 on the boundary y = 0 the
estimate
|Bou(z,0)| < Baw(z,0) < cze™ /2. (2.134)

holds. To prove the same estimate on the boundary y = 1 we take
w(z,y) = ca (1 - exp (—7(1 - y)/ve)) exp(oz)

as the barrier function and use Lemma 13. In a similar way as (2.134), we
get
|02u(z,y)| < Bow(z,y) < c;e™'/? for (z,y) € I, (2.135)

In addition, because of (2.2) we have
|02u(z,y)| =0 for (z,y) € [in U Lout. (2.136)

To prove the estimate (2.133) for j = 1 we differentiate the equation
(2.1) with respect to y. We introduce the notation v; = dou. Then we get

E’l}l:an in .

Choosing a sufficiently large positive constant ¢g we see that the barrier
function

w(z,y) = cs (1 + 6‘1/23(1/)) exp(oz)
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satisfies the relations

(Lw) (z,y) = c6726_1/23(y) exp(oz) + (—60’2 +ob(z) + d(x)) w(z,y)

> [(Lvi)(z,y)| for (z,y) € 2,
w(z,y) > |vi(z,y)| for (z,y) €l

Thus, for 9su Lemma 13 yields the estimate similar to (2.133) for j =1 on
0n.

To prove the estimate (2.133) for j = 2 we twice differentiate the equa-
tion (2.1) with respect to y. Set vo = Jsou and get Lve = Jaaf in (2.

Due to (2.2) v, = 0 on the boundary I'\ I,. Since d11u = u =u =0
on I, because (2.1) and (2.3) we have

|vo| = |Ba2u| = | — Br1u+e H(BO1u+ub — f)| < cre™ on I}, (2.137)
As before, the barrier function
w(z,y) = s (1+ 7 B(y)) exp(ow)
satisfies the agsumptions of Lemma 13 with constant cg large enough:

(Lw)(z,y) > |(Lvz)(z,y)| for (z,y) € L2,
w(@,y) 2 [va(z,y)| for (z,9) € I
Consequently, for j = 2 (2.133) holds on 2.

It remains to prove (2.133) for j = 3. We differentiate the equation (2.1)
with respect to y three times and set vs = Oaoou. As a result, we have

E’U3 = 6222f in .

From (2.2) we get vs = 0 on I' \ I3,. Now let us evaluate the normal
derivative Jua/On on Ii,. For this, act on equation (2.1) by operator 8a0 —
611:

—&09290u + 01111 + b'aggu + bO122u — O111 (bu) = 622f — 811f in 0.

Let us take the limit of this expression in point (z,y) € I,. Due to boundary
condition (2.2) and the equality Joou = — f /e on I}, following (2.2), we get

1
—662’(13 - gal(b’l}3) = 622f - 611f on th.

Therefore

2

|62’U3| S CoE™ on th.
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The barrier function
w(z,y) = cio (1 + 6_3/23(31)) exp(ox)

with constant ¢;o large enough satisfies

(Lw)(z,y) = |(Lvs)(z,y)| for (z,y) € 12,
w(z,y) 2 |vs(z,y)| for (2,y) € '\ Iy,
aw(‘(;:;a y) Z avs(‘gz, y) ‘ for (x,y) € th.

Applying Lemma 14 we complete the proof of the estimate (2.133) for j =3
on (2. The lemma, is proved. O

Lemma 25. Assume that € > 0 is small enough and (2.123), (2.124), (2.4)
hold. Then the estimates

‘8 Uo

sor | S e k=0,1,2,3.4, (2.138)

hold.

Proof. Assume that o is given by (2.10) and ¢ satisfies (2.12). We derive
(2.138) by the comparison principle for the operator Ly, (Lemma 23).
Set d = b, then the barrier function

w(x,y) = cox exp(ox) (2.139)
with the constant ea = 2||f||oo satisfies the relations

(Lparw)(z,y) = c2b(z) exp(oz) + (d(z) + ob(z)) w(z)
Z (EpaTUO)(xay) fOI' (xay) € 'Qa
w(z,y) = luo(z,y)| for (z,y) € I'\ Lou.
Using Lemma, 23, we see that ug is bounded on 2.

From (2.127) it follows that d1ug = 0 on I3, and daeug = 0 on I,. Due
to this together with (2.3), (2.4), and (2.126) the derivative 8;ug is bounded
on I'\ Iy

31U0($,y) S C3 for (xay) € F\Fout- (2140)

Now we derive (2.138) for k = 1. Differentiate the equation (2.126) with

respect to z and introduce the notation v; = 8y ug. Setting d = 2b' we have

(Lparv1)(z,y) = O f —upd” in £
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In view of (2.140) for vy, the barrier function w from (2.139) with the
constant ¢a = 2(||01uo||oo + ||od”||oo) satisfies the assumptions of Lemma,
23. Consequently, 8;uo is bounded on f2.

To prove (2.138) for k = 2 we differentiate the equation (2.126) with
respect to z twice and introduce the notation ve = d11ug. Setting d = 3b’
we get

(Lparv2)(,y) = 011 f — 3b"Brug — ugd” in Q.

From (2.127) we get ~
ve =10 on I3,

Now let us evaluate va on I,. For this, act on (2.126) by operator b0, +£0as:
—6262222U0+b2611’l,t0+6b1622’l,l,0+2blb61U0+b”bU0 = b81f+6622f in .

Let us take the limit of this expression in point (0,y) € I},, 0 <y < 1. Due
to boundary condition (2.127) and the equality &1ug = f/b on I}y, following
(2.126), we get

b2’U2 +2blf = b81f+6622f on Iy,.
Therefore due to (2.3), (2.4) we have
|’U2| S Ca on Fin-

Then the barrier function w with an appropriate constant ce satisfies the
assumptions of Lemma 23. Hence 011u¢ is bounded on n.

Now let us prove (2.138) for k¥ = 3. Differentiate (2.126) 3 times with
respect to z and denote vz = 8111up. Taking d = 4b' in (2.130), we get

Lparvs = Oi11 f — 6001 ug — 46" B1ug — B Vug  in Q2. (2.141)
Boundary condition (2.127) implies
vz =0 on I, (2.142)
In order to evaluate vs on I3, act on (2.126) by operator
Ly = 02011 — 2eb' 090 + €bO12 + £200020.

Coeflicients of this operator are chosen to eliminate mixed partial derivatives
O1122g, O122g, Or2220ug- As a result, we get the equality

—636222222U0 + 3621),6222211/0 + b36111U0 + 3b2b1611’U,0 + 6b2b”822’l,l,0
—26(bl)2622U0 = Lgf - 3b2b”61’l,to - b2bI”U0 in .
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Let us take limit of this expression on Ij,. Due to boundary conditions
(2.127) on I3, we have

b36111U0 = L2f - 3b2b1611’U,0 - 3b2b”61’l,l,0 on -an

Because of smoothness of f, b and estimates (2.4) and (2.138) proved yet
for k = 1,2, we get

|’U3| = |8111U0| S Cs on -an (2143)

Then taking barrier function w in (2.139) with corresponding constant cs,
we satisfy conditions of Lemma 23. It implies (2.138) for & = 3.

Finally, let us prove (2.138) for k = 4. Differentiate (2.126) 4 times with
respect to z and denote v4 = J1111uo- Taking d = 5b' in (2.130), we get

Lparvs = O1111f — 106" 0111u0 — 106" d11u0

(2.144)
=500 uy — 8y in 0.
Boundary condition (2.127) implies
va=0 on Iy, (2.145)

In order to evaluate v4 on I3, act on (2.126) by operator

L3 = 50111 + €b*01122 + 20812222 + 20202020
+3e (2(1)’)2 — bb”) Oa9 — 36bb16122 + 5621),62222.
Coeflicients of this operator are chosen to eliminate mixed partial derivatives

012222220, O112222U0, O12222U0, O11122U0, O122U0, O1122U0. As a result, we get
the equality

b461111’l,t0 —+ L4U0 = L3f - 4b3b16111’l,l,0 - 6b3b”811’l,l,0 - 4b3b’”81u0 in

where operator L, includes ug and partial derivatives of ug with respect to
y. All terms of this equality are continuous in (2 except two corners (0,0)
end (0,1). Let us take limit of this expression on [},. Due to boundary
conditions (2.127) on [}, we have

b461111U0 = L3f - 4b3b16111’l,l,0 - 3b3b”811’l,l,0 - 4b3b”61’l,to in 0.

Because of smoothness of f, b and estimates (2.4) and (2.138) proved yet
for k =1,2,3, we get

|’U4| = |61111U0| S Cg on -an (2146)

Then taking barrier function w in (2.139) with corresponding constant cs,
we satisfy conditions of Lemma 23. It implies (2.138) for k£ = 4. The proof
is complete. [
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Lemma 26. Let ¢ > 0 be sufficiently small and (2.123), (2.124), (2.4) be
valid for the problem (2.1)—(2.2). Then the remainder term in (2.125) sat-
isfies

[nlleo < e1, (2.147)
[Oin(z,y)| < ca(1+e texp(=Bi(1 —)/2)) in £, (2.148)
[611n(z,y)| < cse ™1 (1+ e exp(—=Bi(1 —z)/2)) in .(2.149)

Proof. First we set d = b'(z) in (2.6) so that Lu = f. In view of (2.126),
(2.129), and the estimate (2.138) for j = 2, by an elementary calculation
we show that 7 in (2.125) satisfies

(L) (2,9) = a0(2,9) + 1 (3,1) Az, )
(2.150)

+ az(z,y)A(x,€) on 2

g2

where A(z,e) = exp(—(1 — z)b(z)/e) and ao, a1, a2 are bounded functions
on (2. In a similar way as in Lemma 19, the right-hand side of (2.150) is
evaluated by

1
ILn| < es + (c4g +oes 629”) A(z,¢). (2.151)

Let us use the barrier function

w(z,y) = c13t1(x,y) + cratpa(z,y)

where the functions 11, ¥9 are taken from Lemmata 16, 17 with the con-
stants from Lemma 19. This gives

|(Ln)(z, )| < (Lw)(z,y) in L.

Moreover, we have
w>0=|n on I.

Thus, all the assumptions of Lemma 16 are satisfied. By this lemma, 7 is
bounded on (2.
Besides, since

w(0,y) =w(l,y) =0 Vye [0,1],

we have
|01m(0,9)] < s and |01n(1,y)| < cre™. (2.152)
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In order to show (2.148), we first differentiate (2.150) with respect to .
Denoting v = 817 and setting d = 20’ in (2.6), from (2.138) for j = 3 we
obtain the representation

(E,U) (1’.7 y) =as (1’.7 y)

1 1—2
+ S y)AR,e) + 5 as(x,y) A, )

(2.153)

with functions as, a4, and as, bounded on (2. The right-hand side of (2.153)
can be estimated in the following way:

[(Lv)(z,9)] < es + coe™ exp(—Bi (1 - z)/(2€)).

Now choosing the barrier function w = ¢9%3 from Lemma 18 with an
appropriate constant ¢1o, we get

|(Lo)(z,y)| £ (Lw)(z,y) in L2,
w>0=v] on I}, w>|v] on IjyUlpy.
The last inequality follows from (2.152). Thus, due to Lemma 13 we obtain
o] <w on 2

that implies (2.148).
In order to prove (2.149), differentiate (2.150) twice with respect to z
and denote v = d117. Taking d = 3V’ in (2.6) we get

eLve = 011 f — 3eb”" 01y — eb"'n — Lyug — Lepo (2.154)

where
Lsug = —e01111u0 — €120 + 0111 (buo), (2.155)
Lgpy = —€01111p0 — €01122p0 + O111(bpo), (2.156)

Due to smoothness of b, f and estimates (2.147), (2.148) three first terms
in the right-hand side or (2.154) are bounded by constant (independent of

£).
Next examine Lsug. Due to the equation (2.126) we get

Lsug = —€01111%0 + 011 (Lparto) = —€01111%0 + O11 f.

Take into consideration smoothness of f and the estimate (2.138) for k& = 4.
Then last expression is bounded by constant (independent of ).
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Finally, examine Lgpg. Introduce one more operator
EIPO = —6811,00 + balpo. (2157)

Taking this operator into consideration, we rewrite Lgpg in the following
form:

L6,00 = 811£1p0 + b’811p0 + 2b”61,00 + b”lpo — 661122,00. (2158)
Direct computation of 811 L1 pg gives equalities

011 L1po = —€B1111p0 + bO111p0 + 26'011po + " 01 po

4 min{i+2,4} (2.159)
' 1—2)¢
— 4@y Y Y
=0  j=0

where functions p;; is bounded in modulus due to smoothness of b. Because
of boundedness of t* exp(—t) on (0,00), we have

(1 - z)?

— AY?(z,e) < enr. (2.160)

It implies the following estimate for the right-hand side of (2.159):
1611 L1po| < c12 (1 +& % exp (—B1(1 — 2)/(2))) . (2.161)
Next let us evaluate |011p0|- From its definition we have

1 1 1-2 1-2 (1-—z)?
= - A
A1 po (q1 toGt Bt a6t 506 | Alwye)

with functions ¢; bounded because of smoothness of b. Due to (2.160) we
have

|811p0l <13 (1+e %exp (=Bi(1 —3)/(2))) in 2. (2.162)
Terms b"” 01 pg and b py are evaluated by same way that gives

|b'11p0 + 26" 1 po + " po

(2.163)
<cuy(L+e2exp(—Bi(1-2)/(2))) in 2.

Finally, we examine term 8;120p9. Due to definition of pg

B112200 = O1122 (9(¥)s(z) Az, €)) = ¢" () (s(2)A(,€))". (2.164)
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Since g(y) = —uo(1,y), we need to estimate Jagug on I, ;. Take the equation
(2.126) in the form

622U0 = —6_1 (f - 61(bu0)) in 0.

Then come to the limit in a point of I},,; and take into consideration (2.138)
with £ = 0,1. As a result, we get

|Ga2uo| < c15e™" on Tou.
Thus, combine this inequality with (2.164) and (2.162), we have

€|01122p0| < ¢16/611p0|
(2.165)
<eci7 (l1+eexp(—Bi(1-2)/(2))) in 0.
So, combine estimate (2.161) — (2.163), (2.165) to obtain the estimate
e|Lvs| < c18 +croe 2exp (=B1(1 —)/(2)) in 2.  (2.166)
Boundary condition (2.127) implies
|61177| =0 on th. (2167)

Now let us evaluate the boundary value of 8119 on I,. Act on (2.125) by
operator L:

Lu=Lug+ Lpy +eLn in (2 (2.168)
Then use equation (2.1), (2.126) and come to the limit in a point of I5,:
f=f—-€bu+ Lpy+eln on Ty,

Since cut-off function equals 0 in the vicinity of I, then Lpy = 0 on [7,.
Function 5 equals 0 on I5,. Therefore

Lin = 0nu,

from which
elOun| < B1]61n| + |01y on Iy,

Applying (2.148) and (2.138), we get the estimate

|| < ea0 on I;,. (2.169)
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Next, consider the boundary value of 8117 on I,y:. For this, act on (2.125)
by operator L;:

Liu=Liug+ Lipo+eLlin in (2

Then come to the limit in a point of I',,; and use the boundary condition
=0 on I,,:

f=Lu=Liug+ Lipo+eLin on [y (2.170)
Direct computation gives the equality
Lipo=—b on I[,yu.
Applying it with (2.148) and (2.138) for &£ = 1,2 to (2.170), we get
g|loiin| < core ! on Tyt (2.171)

Thus, choosing the barrier function w = ¢g21p3 from Lemma, 18 with an
appropriate constant cae, we get

e|(Lva)(z,y)| < (Lw)(z,y) in £,

glval =0<w on I, glval <w on Ty ULy

because of (2.166), (2.167), (2.169) and (2.171) respectively. Due to Lemma,
13 we obtain B
glva] <w on 2

that implies (2.149). O

2.3.2 Construction of the fitted quadrature rule.

For the approximation of the regular boundary layer we use the tech-
nique considered in the previous section. For the approximation of the
parabolic layer we construct the special grid based on the extension method
(see [36], [37], [5)).

First we put h = 1/n with even integer n > 2 and take the uniform grid
in the z-direction:

z;:=th, 1=0,1,..,n.
Next, in the y-direction we algorithmically introduce the graded grid in the
y-direction:
0, for j=0,
Coh

1+ e 12 exp(—yy;—1/vE)’
1-yp_;, for j=n/2+1,..,n.

yj =1 Yi—1 + for j=1,..,n/2, (2.172)
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2,541 Zi41,54+1

(u)
TS
)
7§
Zij Zi41,5

Fig. 4. Fragment the trangulation 7.

The constant cy satisfies the condition y,, /o = 1/2. Unfortunately, this leads
to a nonlinear equation in ¢g.
We define the mesh size in the y-direction by

hj=y;—yj—1, j=1,..,n (2.173)
We denote the set of nodes by
O = {zij = (@4,95), 4,5 =0,1,...,n},
the set of interior nodes by
2, ={zi; = (x5,95), 4,7=1,2,...,n—1},
and the set of boundary nodes by
I, = {2z = (%,y;), i=0,land § =0,1,...,7;4 = 0,1,...,n, and j =0, 1}

Then the triangulation 7}, is constructed by dividing each elementary rectan-
gle £2;; = [&4, Zit1] X [y, Yj+1] into two elementary triangles by the diagonal
passing from (z;,y;) to (®i+1,yj+1) (see Fig. 4).

For each interior node 2;; € {25, we introduce the basis function ¢;; which
equals 1 at the node #z;;, equals 0 at any other node of (2, and is linear on
each elementary triangle of 7. Denote the linear span of these functions by

H" = span{pi;}7;2;.

With this notations, we formulate the Galerkin problem: find u® € H" such
that
a(u®,v) = (f,v) YveH" (2.174)
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As before, in order to ensure the stability and to improve the accuracy
of the method, we construct the special quadrature rule that provides good
approximation on the smooth and boundary layer components of the solu-
tion. Since this technique was described in detail in Section 2.2.2, now we
sketch the broad outlines of the construction of the quadrature rule on the

nonuniform grid.

Let T(l) (or TZ(JU), respectively) be an arbitrary elementary triangle of
Tr, with the vertices Zigy Zig1,541 = (@it1,Yj+1), and 241 5 = (@41, y;) (or
Zi+1,j = (i, Y541), respectively) as in Fig. 4. We consider the bilinear form

ou Ov Ou v
= — = — 0. 2.1
ar(u,v) /T ((Eax bu) 55 ¢ oy By) d (2.175)

Its approximation by piecewise linear functions w”,v® € H", for example,
on the triangle Tl.(jl) has the form

hh; vl
a;@ (wh, ") = #‘H( (ebi(auwh(zij) + a2iwh(zz'+1’j))) %
v (2.176)
SOt @)
Oy Oy /°

As before, the weights a;; and ag; are chosen in such a way as to sat-
isfy two requirements, namely, to guarantee the first order accuracy for a
smooth solution and to reduce the error of approximation of the difference
ary; (po, v™) — aT (p¢,v") for the regular boundary layer component py and

its piecewise hnear interpolant p{ € H" on each element Tj; € Ty. The first
requirement involves the equation

ay; + ag; = 1. (2177)
To satisfy the second one, we demand that the equality

ar,; (Gi,v") = o, (¢, 0") (2.178)

be valid for the function (;(z) = exp (—(1 — z)b;/€) and its piecewise linear
interpolant ¢} (z,y) on Tj;. Solving the system (2.177), (2.178), we get the
unique solution

_ exp 0; 1 1 1
Qi = ————5 — —, Q= ——

_ 2.179
(expo; —1) oy o; expo;—1 ( )
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where o; = b;h/c. With this weights we obtain the following approximation
of the elementary bilinear form (2.176):

h h o,k 1 bi h h vt
aT}})(w NS Shhj+1 (m(wiﬂ,j — w;; exp Ui)%
(2.180)
4 anh avh)
dy oy /
In a similar way, on the triangle Ti(;‘) we have
h hohy _ lhh bi h h vt
G (w",v") = g hhj+1 (m(wi-i-l,j-i-l — W j41 €XP Uz')—m
(2.181)
anh avh)
dy oy /

To integrate the right-hand side, we use the simple piecewise constant
approximation. This gives the following approximation of the linear form

1
o (") = g1 (figvis + firrgvinrg + firrgr1visng),
Y (2.182)

1
T (1) = g a1 (figVis + fojrivigen + firt jravien ja)-

Summing (2.180), (2.181), and (2.182) over all the triangles T' € T}, we
obtain the approximations of the bilinear and linear forms

a(wh o) = Z al(wh, vP), (2.183)
TeTn
My = 3 fhet). (2.184)
TeTh

Now we come to the fitted Galerkin problem: find u" € H" such that

a(uh, o) = ") Vol e H. (2.185)
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This problem is equivalent to the system of linear algebraic equations

(L ")y =
uh hj + hj_;,_l b; exp o; n bi_1 +eh l n 1
* 2 expo; —1  expo;_1 —1 hy  hjn
h; +h; b; hj+h;y1 bi_1expo;_
h J Jj+1 i h J j+1 Ui—1 i—1
B —ul . 2.186
ity 2 expo; — 1 Yi-1,j 2 expo;_1 — 1 ( )
h h hj +h ..
- “?,j—lei - “?,j+15h = fij—~ + Mh, i,j=1,2,.,n—1;
J i+

uf] =0fori =1.,n—1and j = O,n or for j = 1,...,n —1
and i = 0, n.

The parameters {u give the solution of the problem (2.185)

z]l

n—1
M=) uipy (2.187)
3,5=1
Eliminate the boundary unknowns and enumerate the remaining un-

knowns and the equations from 1 to (n — 1)? in the same way (for example,
in the lexicographic order). We obtain the shortened system

AN =F (2.188)
where
= ( 1,10+ ’u? n—l’ug,l’ ""UZ—I,n—l)Ta

U
F = (f"p1,0)s 0 M (01,0-1)5 s I (n-1,0-1)) "

Note that the matrix A" is irreducible [21], has positive diagonal elements
and non-positive off-diagonal ones. Then this matrix is diagonal-dominant
along columns and strictly diagonal-dominant along some of them. There-

fore A" is an M-matrix. Hence, the system (2.186) satisfies the comparison
principle and has unique solution [21].

2.3.3 The properties of the discrete problem

Now we investigate the discrete problem. The following lemma estab-
lishes the error of the approximation of the problem (2.1), (2.2) by the grid
problem (2.186).
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Lemma 27. Let u be a solution of the problem (2.1), (2.2) under the condi-

tions (2.4), (2.3), (2.70), and u” be a solution of the discrete problem (2.186).
Then the estimate

| (Lh(uh - uI))”)l
(2.189)
< cih(hy + hjp1) e+ h+exp(—(1—2z441)B1/2¢)) Vi, j=1,..,n—1
holds.

Proof. Consider the operator L” as the sum of two operators of difference
differentiation with respect to z and y

LMy = Lo + Lo (2.190)
where
b; exp o; bi_1 b;
M), = : : : = L q
( 1U)m ( (exp o —1 + expo;_; — 1 vij exp o; — Vi
(2.191)

_ b;_1expo;_ ) ) hj + hj_;,_l
expo;_1—1 1 2 ’

1 1 h h
(LS’U)” =ch (h_] + m) Vij — Eh—j’l}i’j_l - Ehji’l}i’]q_l, (2192)
,7=1,..,n—1.

Using the Tailor expansion at (z;,y;) € {2, we have

1
(Lu)y; = 5 = ehlh; + hj1)0ru(i, yj)
—ch (h?m (zi,y) + h?+1772 (i, y)) .
Because of (2.133) the inequalities

I (@i,9)| < &2 (1+7%/2Bly; 1)), Ima(wi,y)| < s (1+%2B(yy)) ,
for y; < 1/2,
I (@s, ) < o1 (1+72B(y,) ), Ima(ai, )] < e (1+e72Bly;m))
for y; > 1/2

hold. In view of the definition (2.173) of the mesh size in the y direction,
we get

|hjm (25,9, |hjerima(@i,y)| < cehe™.
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Then we obtain

(Lgu) — _Ehm

if

Boou(@s, y;) + crh® (hj + hjy1)ms(zi,y)  (2.193)

where 73 (2;,y) is bounded on [y;_1,y;+1].
Using the expansion (2.125), we can write
L' = Llug + Llpy + L. (2.194)

Now we consider each term in detail.
Using the Taylor expansion of ug at (z;,y;), we have

h;j + h;
(L?uo)l.j = ]TJH ((bi — bi_1)Uoij
bi bi_1expai_1
(eXp o;—1 - expo;_1 — 1 ) haluO(xlay])> (2195)

+ B2 (hj + hjp)ma(@, ys)-
Since b(z) is smooth, by the mean value theorem we can write (2.195) in
the form
hj + hj+1
2
+ B2 (hj + hj1)ms (@, ;)

(L?’U,o)ij =h (bl (-’I»'i)uoij + bial’u,o(.’l,'i, y]))

(2.196)

where 75 is bounded on [z;_1,Z;y1].
Further, using the explicit form of the boundary layer function po(z,y)
in (2.191), we obtain

expo; —1 expo;_1 —1

(L?Po)f((b"exp‘” * ot Yol (<(1 - )b/

b;
= ————uo(1,y;)si+1 €xp (— (1 — Tiy1)bit1/€) (2.197)
expo; — 1
bi_1e i h; + h;
_ ww)(l, y;)8io1 exp (—(1 — zs_1)bi_y Je) | L+
expo;_1 — 1 2

Using the mean value theorem, the smoothness of b(z), and (2.33), we have
the estimate

lexp (= (1 — ziy1)biy1/€) — exp (=(1 — it1)bi/e) |
1—z;_ *
< b - bi—ﬂ# exp (—(1 — z;—1)b; /e) < cgshexp (—(1 — zi1)B1/2¢)
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where b; € [By, B2]. Rearranging the terms in (2.197) and taking into con-
sideration the smoothness of s(z), we get

expo; — 1

(Lipo),; = ((bﬂ exp (—(1 - 2:)bi/2)

_expai -1

b e (—(1- xm)bi/e))

+ (l)’;l exp (—(1 —z4)b;i—1 /) (2.198)

expo;—1 —1

bi—1expo;_1

- " exp(—(1-— $z)bz/5)>

expo;—1 — 1

hj + hj+1

5 uo(L,y5) = h(hj + hji1)ms (2, y;)

+ hﬂ-ﬁ(ma y]))

where

|76 (2, y5)| < coexp (—(1 — 2it1)B1/2), @ € [zi—1,Tip1].

By the mean value theorem, from (2.191) the equality
1
€ (L?U)U = 55(’11 + hjt1)(bi = bi1)mij + h(hy + hjt)mr(z,y;)  (2.199)
follows where due to (2.148) we have

|77 (z,y;)| < cro (e +exp (—(1 — z441)B1/2¢)), =€ [xi—1,%it1). (2.200)

Taking into consideration (2.147) and the smoothness of b(z), the equality
(2.199) can be rewritten as

with the estimate of g similar to (2.200).
Thus, combining (2.193), (2.196), (2.198), and (2.201), we obtain

‘(Lh(uh — u))” = ‘(Lhuh)ij + (eaggu(xi,yj) — b;Oiuo(zs,y5)
o (2.202)
- uoub'(%‘)) h]TJH + h(hj + hjr1)mo0(z,y)
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where

|T10(2,y)| < cro(h+ € +exp (—(1 — z441)B1/2¢)),

T € [Tio1,Tit], Y € [Tj—1,Yj41]-
At the nodes of the grid the following equality holds:

hj + hj+1

fij = h=——(Lu)y-

Y

hohy it hin
(L' )ij_hT

Now consider the expression
Liv = —e011v + 01 (b(z)v).
Use the expansion (2.125) and write
Lyu= Lyug + Lipg + €Lqn.
Because of (2.33), for L pg the following estimate holds:
|Luol = |g(y) exp (~(1 = 2)b(z)/2) (1 - 2)p"

Fel(1—2)bb — b +e (1 —2)? (v)? ) ‘
<ecnnexp(—(1—=)B1/2e) for =z € [x;,zit1]-

Taking into account (2.147), (2.148) and (2.149), we get
e|lLin| < ciz(e+exp(—(1—z)B1/2)) for =z € [z, ziq1].
Thus, with (2.138) for 811ug, we obtain
(Liu)y; = bidvuo (@i, y5) + uosb (x:) + 711 (2, y) (2.203)

where 711 is estimated similarly to (2.200).

By substituting (2.203) into (2.202) we complete the proof. O

In order to prove the convergence of the numerical solution to the exact
one, we define the barrier function for the right-hand side of (2.189).

Lemma 28. There exist grid functions " and " on (2;, with the properties

l"| <t on 2, (2.204)
[¥"| < coh on (4, (2.205)
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such that

LPoP > hhjn  in (2.206)
" >0 on Iy (2.207)

L™ > hhjyiexp (—=Bi(1 — z;41)/26)  in Oy, (2.208)
Y" >0 on I (2.209)

This lemma is proved in much the same way as Lemma, 21.
Finally, the following convergence result is valid.

Theorem 29. Assume that (2.4), (2.3) hold. Then there exist constants hg
and ¢ independent of h and £ such that V h < hg and for € < h the solution
u” of the problem (2.186) satisfies the estimate

max |u — u"| < ch (2.210)

2
where u is the solution of the problem (2.18), (2.19).

The proof follows from Lemmata 27 and 28 as in the previous case.

Thus, we constructed the grid problem for the convection-diffusion prob-
lem with regular and parabolic boundary layers. Its solution converges to the
exact one with the first order in the uniform discrete norm. The numerical
experiments described in Chapter 3 confirm this.

3 Numerical solution of the discrete problem

3.1 Numerical experiments in the one-dimensional case

As a test example we considered the problem

—eu” +((1+2z)u) = f, =z€(0,1),
u(0) =u(l) =0
where
exp(—2/¢)
1—exp(—2/e)’
The parameter £ was taken in the range from 1/10 to 1/5120. The exact
solution of this problem is given by

flx)=62>+2x —2c+2d, d=

u(@) =% +d - (d+ 1) exp (M)

£
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We compared the numerical results obtained by the stable upwind scheme

€ U; — Ui
—h—2(ui+1 — 2u; + ui_1) + bilT“ + bgui = fi,
(3.1)
t1=1,...,n—1, wuy=1u, =0,
by the difference scheme with exponential fitting (see [23])
E0; b;
—h—; (wit1 — 2u; +ui—1) + ﬁ (Wit1 — ui—1) + bju; = fi,
(3.2)
g = Uy =0
. . . . b;h b;h
with the variable fitting coefficient o; = gcth % ; by the proposed two

schemes (1.53)—(1.54) and (1.80)—(1.81); and by the first-order scheme from
[122]. The number n of the nodes of the grid varied from 10 to 320 and the
mesh size was difined as h = 1/n. The error of the numerical solution was
calculated exactly:

8(n) = llu = uMloo,n = max fus; - uijl.

Table 1. The error of the simple upwind scheme (3.1).

£

1/10 1/20 1740 1/80 | 1/160 | 1/320
1/10] 1.5110-1 | 1.5310-1 | 8.9810-2 | 5.3310-2 | 2.8610-2 | 1.4810-2
1/20| 8.9610-2 | 1.7410-1 | 1.6510-1 | 9.6410-2 | 5.6610-2 | 3.0210-2
1/40| 4.7610-2 | 1.1310-1 | 1.8710-1 | 1.7110-1 | 9.9810-2 | 5.8310-2
1/80| 5.2310-2 | 4.7910-2 | 1.2610-1 | 1.9310-1 | 1.7410-1 | 1.0210-1
1/160| 5.3710-2 | 2.8710-2 | 6.2010-2 | 1.3310-1 | 1.9710-1 | 1.7510-1
1/320| 5.4110-2 | 2.4410-2 | 2.4410-2 | 6.9310-2 | 1.3710-1 | 1.9910-1
1/640| 5.4010-2 | 3.0110-2 | 1.5510-2 | 3.2110-2 | 7.3010-2 | 1.3910-1
1/1280| 5.7210-2 | 3.0210-2 | 1.5810-2 | 1.2310-2 | 3.6010-2 | 7.5010-2
1/2560| 5.8010-2 | 3.0210-2 | 1.5910-2 | 8.0510-3 | 1.6410-2 | 3.8010-2
1/5120| 5.9310-2 | 3.0310-2 | 1.5910-2 | 8.1110-3 | 6.2110-3 | 1.8410-2

The numerical results are given in Tables 1-5 and in Figures 5-7. In the
figures the error of the simple upwind scheme is marked by the number 2,
the error of the first-order scheme from [122] with the fitted quadrature rule
is marked by 3, the error of the difference scheme with exponential fitting
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Table 2. The error of the fitted first-order finite element scheme from [128].

£

1/10 1/20 1/40 1/80 1/160 1/320
1/10 1.7110-2 | 3.0110-3 |3.8310-3 | 2.5410-3 | 1.4310-3 | 7.5510-4
1/20| 3.4910-2 | 8.0410-3 |1.9010-3 | 2.2410-3 | 1.4610-3 | 8.1610-4
1/40| 4.9510-2 | 1.7310-2 | 3.8810-3 | 1.0510-3 | 1.2110-3 | 7.8210-4
1/80| 5.7010-2 | 2.4910-2 |8.6210-3 | 1.9010-3 | 5.5110-4 | 6.2710-4

1/160| 6.0710-2 | 2.8910-2 |1.2510-2 | 4.3010-3 | 9.4310-4 | 2.8210-4
1/320| 6.2610-2 | 3.0910-2 |1.4510-2 | 6.2510-3 | 2.1410-3 | 4.6910-4
1/640 6.3610-2 | 3.1910-2 | 1.5510-2| 7.2810-3 | 3.1210-3 | 1.07106-3

1/1280 6.4010-2 | 3.2410-2 [1.6010-2| 7.7910-3 | 3.6410-3 | 1.5610-3

1/2560 6.4310-2 | 3.2610-2 [1.6310-2 | 8.0510-3 | 3.9010-3 | 1.8210-3

1/5120| 6.4410-2 | 3.2710-2 |1.6410-2 | 8.1810-3 | 4.0310-3 | 1.9510-3

Table 3. The error of the difference scheme (3.2) with exponential fitting.

© [T1/i0 | 1/20 | 1740 | 1/80 | 1/160 | 1/320

1/10 1.5810-2 | 6.2310-3 | 2.7910-3 | 6.3710-4 | 1.0810-4 | 1.7710-5
1/20| 3.0710-2 | 9.2910-3 | 2.9310-3 | 1.3710-3 | 3.1510-4 | 5.3110-5
1/40| 4.5110-2 | 1.6510-2 | 5.0210-3 | 1.4110-3 | 6.8010-4 | 1.5610-4
1/80| 5.2510-2 | 2.3810-2 | 8.6910-3 | 2.6310-3 | 7.0110-4 | 3.3810-4
1/160| 5.6310-2 | 2.7710-2 | 1.2210-2 | 4.4710-3 | 1.3510-3 | 3.5810-4
1/320| 5.8110-2 | 2.9710-2 | 1.4210-2 | 6.1910-3 | 2.2710-3 | 6.8210-4
1/640| 5.9110-2 | 3.0710-2 | 1.5210-2 | 7.2010-3 | 3.1210-3 | 1.1440-3
1/1280| 5.9510-2 | 3.1210-2 | 1.5710-2 | 7.7110-3 | 3.6210-3 | 1.5610-3
1/2560 5.9810-2 | 3.1410-2 | 1.6010-2 | 7.9710-3 | 3.8810-3 | 1.8210-3
1/5120| 5.9910-2 | 3.1510-2 | 1.6110-2 | 8.1010-3 | 4.0110-3 | 1.9510-3
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Table 4. The error of the fitted finite element scheme (1.53)—(1.54) with the linear
quadrature rule.

© T1/i0 [ 1/20 | 1740 | 1/80 | 17160 | 1/320

1/10 2.5310-3 | 1.1910-3 | 3.7410-4 | 1.0210-4 | 2.6610-5 | 6.7910-6
1/20 1.2910-3 | 8.3010-4 | 3.8010-4 | 1.1810-4 | 3.1810-5 | 8.2510-6
1/40| 1.5110-3 | 6.5510-4 | 2.9410-4 | 1.3210-4 | 4.9510-5 | 1.2010-5
1/80 2.2910-3 | 3.9810-4 | 3.2910-4 | 1.1510-4 | 5.0910-5 | 2.7510-5
1/160| 2.7710-3 | 6.0010-4 | 1.0210-4 | 1.6510-4 | 4.9510-5 | 2.7410-5
1/320| 3.0010-3 | 7.0110-4 | 1.5310-4 | 3.2110-5 | 8.2510-6 | 2.2710-5
1/640| 3.1110-3 | 7.6310-4 | 1.7910-4 | 3.8710-5 | 2.2410-5 | 4.1210-5
1/1280| 3.1610-3 | 7.9210-4 | 1.9210-4 | 4.5210-5 | 9.7210-6 | 1.2810-5
1/2560| 3.1910-3 | 8.0610-4 | 2.0010-4 | 4.8410-5 | 1.1310-5 | 2.4410-5
1/5120| 3.2010-3 | 8.1210-4 | 2.0310-4 | 5.0010-5 | 1.2210-5 | 2.8410-6

Table 5. The error of the fitted finite element scheme (1.80)—(1.81) with the
nonlinear quadrature rule.

£

1/10 1/20 1/40 1/80 1/160 1/320
1/10| 2.2710-3 | 1.5010-3 | 4.1110-4 | 1.1210-4 | 2.8610-5 | 7.2210-6
1/20| 9.2410-4 | 1.1210-3 | 7.1310-4 | 1.9410-4 | 5.2010-5 | 1.3210-5
1/40| 1.8410-3 | 2.3910-4 | 5.5410-4 | 3.4710-4 | 9.4310-5 | 2.4910-5
1/80| 2.4610-3 | 4.6710-4 | 6.0210-5 | 2.7510-4 | 1.7110-4 | 4.6410-5

1/160| 2.8210-3 | 6.2910-4 | 1.1710-4 | 2.7510-5 | 1.3710-4 | 8.4710-5
1/320 3.0110-3 | 7.2010-4 | 1.5910-4 | 2.9410-5 | 1.7310-5 | 6.8310-5
1/640 3.1110-3 | 7.6910-4 | 1.8110-4 | 3.9910-5 | 7.3810-6 | 9.5310-6

1/1280 3.1610-3 | 7.9410-4 | 1.9410-4 | 4.5710-5 | 9.9910-6 | 1.8519-6

1/2560| 3.1910-3 | 8.0610-4 | 2.0010-4 | 4.8410-5 | 1.1410-5 | 2.5010-6

1/5120| 3.2010-3 | 8.1310-4 | 2.0310-4 | 5.0310-5 | 1.2210-5 | 2.8610-6




104 Karepova E.D., Shaidurov V.V.

; Nl

i

107°

10 ~ 20 40 80 160 320

Fig. 5. The maximum error §(n) in the one-dimensional case for £ = 1/10.

is marked by 4, and the error of the presented finite element scheme with
the nonlinear quadrature rule is marked by 5. For comparison we show the
straight lines with slopes tgy = 1 and tgy = 2 which are marked by 1 and 6
respectively. The numerical results for the presented scheme with the linear
qudrature rule does not differ visually from the polygonal line 5 and are not
shown in the figures.

1.0
1
1072 2
\ 3, 4
10_4 \1\ e .
5
10~ 6
10 20 40 80 160 320

Fig. 6. The maximum error §(n) in the one-dimensional case, for ¢ = 1/160.
The study of the behaviour of the error of the simple upwind scheme
(3.1) shows that for € > h (Fig. 5) this scheme has the first-order accuracy,
but with & decreasing the order of accuracy decreases. In [103] it was shown
that the scheme (3.2) with exponential fitting has the second-order accuracy
for £ > h (Fig. 5) and only the first-order accuracy for small value of . This
is seen in Figs. 5-7, where the slope of the polygonal line 4 is changed
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Fig. 7. The maximum error §(n) in the one-dimensional case for e = 1/5120.

at around € = h. Calculations for the scheme from [122] confirm the first-
order convergence for small values of the diffusion parameter. The presented
schemes have the second-order convergence not only for € < h/2 that the
theoretically proved but for £ > 2h as well. The results (see Tables 4, 5 and
Figs. 5-7, polygonal line 5) show that for all values of & these scheme are
more accurate than those consider here.

3.2 Test example in the two-dimensional case

Let (2 be the square (0,1) x (0,1) with the boundary I'. As a test example
we consider the problem

—eAu+Su=1 in £, (3.3)
u=0 on I. (3.4)

The solution of this problem has a parabolic boundary layer along the
boundary I3, and a regular boundary layer near I'py;.

The calculations were done on grids uniform in the z-direction. To refine
the grid in the y-direction in the parabolic boundary layer, two approaches
were considered. The first approach has been proposed by N.S.Bakhvalov
in [5]. This approach uses the estimates of the normal derivative of the
solution. We consider two kinds of these grids. The second approach has been
considered by G.LShishkin ([112], [58]). He use the grid with a piecewise
constant mesh size that is refined in the parabolic boundary layer.

To solve the discrete problem we applied the pointwise and block Gauss-
Seidel methods. We also use the cascadic multigrid algorithm where the
interpolation on a coarser grid is taken as the initial guess on a finer one.
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3.3 The grids

First we construct the grid in the y-direction according to the works by
N.S.Bakhvalov [5] and V.D.Liseikin [36], [37].

Define the nodes of the grid on the segment [0,1] by a non-singular
transformation A(g) : [0,1] — [0, 1] in the following way:

y; = AGh), j=0,1,..,N, h=1/N. (3.5)

The generating function A(g) is taken so that the difference of the values
of the solution at the neighboring nodes in the y-direction is uniformly
founded:

lu(z, yjr1) —u(z,y;)] <eah, §=0,1,.,N-1.
This condition is satisfied if A(¢) is a piecewise smooth function and

Ou(z, A\(q))
dq

‘ < qe(0,1). (3.6)

According to [36], the use of the estimates (2.133) of the derivative dsu(z,y)
instead of the derivative itself leads to the stronger condition

‘3'“”(90, Ag))
Oq*

‘303, 0<qg<1, k>1 (3.7)

Since the solution has two parabolic boundary layers in (2 near the
boundaries Iy, = {(z,y) : € [0,1], y = 0} and I}, = {(z,y) : © €
[0,1], y = 1}, we consider the function A(g) which is symmetric about
the point ¢ = 0.5. The explicit form of the local transformation A(g) in the
vicinity of a parabolic boundary layer, for example, near Ftog, can be found
as the solution of the problem

Z—Z =cyexp (—vy/veE), q0)=0, e1=1/ /04* exp (—t/VE) dt

where g, > ¢ is the thickness of a boundary layer.
Then on [0, g«] the generating function has the form

AMg) =veln(1+4(1-+e)g), 0<q<qa. (3.8)

On the segment [g., 0.5] the function A(g) is the tangent vg + 6 to the curve
(3.8) at the point g.. The point ¢. of sewing and the parameters v, § are
obtained by the following iterative process:



The finite element method for convection-diffusion 107

1. the point ¢, = h[n/4] is taken as an initial guess;

2. with the value ¢* we construct the straight line v*q+ &% passing through
the points (g%, A(¢%)) and (0.5, 0.5);

3. we determine ¢¥*! from the equation

M) k.
5q 7

4. if |g"*! — ¢¥| > 6step with the a priori chosen error dgte, then go to step
(2) else ¢F is chosen as the point of sewing, v* and 6* are taken as the
parameters of the straight line, and the iterative process is terminated.

Thus, the generating function for the Bakhvalov grid has the form

Veln(1+4(1-+/e)g), 0<Lg<qs,
Mg) =< g+, g. < ¢<0.5,
1-X1-¢), 05<g<l.

We can consider the grids presented in Chapter 2 as grids of the Bakhvalov
type, since they are constructed using the information on the behaviour of
the normal derivative of the solution.

In this case unlike (3.5) the generating function can not be defined ex-
actly. The nodes of the grid are determined by the equalities

Yo =0,
Coh y n
c=qys_1 + ’ =125,
U T e Pexp (—yyy 1 V) ? (3.9)
Yns2 = 0.5,
.on
Yi=1—Yn—j, J= 2 e

Here h = 1/n. The grid parameter ¢y is determined from the nonlinear
equation

Coh
1+e 1/2exp (—’Yyn/2—1/\/5) -

In the numerical experiments we used the Jacobi-type iterative process.
Another way of grid refinement that we used in the numerical experi-
ments has been proposed by G.I.Shishkin (see, for example, [112], [58]).
Let n 4+ 1 be the number of nodes in the y-direction. The thickness of
the numerical parabolic boundary layer is determined by

= min{1/4,elnn}.

Ynj2 = Ynj2—1 T
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Fig. 8. The mesh-size functions.

The mesh-size is piecewise constant. In the vicinity of the parabolic bound-
ary layer y € [0,7] U [1 — 7, 1] it is taken by

T

and in the remaining part y € [r,1 — 7] it is determined by

"> = 1]
1-27
e = Ty

Table 6. The characteristics of the grids.

number of nodes thickness of

n in bound. layer bound. layer
Bakhvalov| Shishkin| Bakhvalov| Shishkin
32 8 8| 5.94310-2 | 1.09610-1
64 16 16| 7.54010-2 | 1.31510-1
128 31 32| 7.54010-2 | 1.55410-1
256 62 64| 8.10710-2 | 1.75010-1
512 123 128| 8.10710-2 | 1.97210-1
1024 245 256| 8.10710-2 | 2.19110-1
2048 489 512| 8.10710-2 | 2.41110-1

The mesh size functions for each grid are demonstrated in Fig. 8. The
number of nodes in the vicinity of the parabolic boundary layer and the
thickness of the layer for the Bakhvalov and Shishkin grids given in Table 6
for various values n for ¢ = 1073. On the presented grid (3.9) the thickness
of the boundary layer is not clearly defined.
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3.4 Methods for solving the discrete problem

In Chapter 2 the discrete problem (2.188) was obtained. To solve it we apply
the pointwise and block Gauss-Seidel methods. Now we briefly describe these
methods according to [47].

We represent the matrix A” in (2.188) as the sum of the lower triangular
matrix B® with a nonzero diagonal and the upper triangular matrix C* with
the zero diagonal

Alh = Bh 4 O (3.10)
where
al, 0 0 -- 0 0
aél (13’2 0 e 0 0
BY=| a}y as a --- 0 0 ,
a’ﬁll ‘1]1(42 ‘1]1(43 GIX/IM—1 GIX/IM

0 0?2 0?3"' G’?M—l G’?M
00 ‘133"' a’gM—l a’gM
Chr=1| oo e oo L.
0 0 0--- 0 a’;,,_l’M
0 0 0--- 0 0

M=mn-1)x(n-1).
Using these notations we rewrite the Gauss-Seidel method as

Byt 4 chy®) — F £ =0,1,...; @ =0. (3.11)

From here on, k is the number of iteration steps.
The iterative process (3.11) can be rewritten in the canonical form

Bh (u(k+1) - u(k)) + AM® = F, (3.12)

The operator B” is a triangular matrix, hence it is not self-adjoint.
Taking into account (2.186), we can write the system (2.188) in the form

—@iUi-1,j + bijtij — Cijuir1,j — dijti,j—1 — €ijUijy1 = fij, (3.13)
,7j=1,.,n—-1
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where
Qs = hj + hjt1 bi1expoi d;; = ei
i 2 expoj_1 — 1’ Y h;’
hj + hji1 b; h
L e 14
cij 5 pe— €ij 6hj+1 ) (3.14)

bij = Qi+1,j T Ci—1,; + dij + ;5.
Then the pointwise Gauss-Seidel method (3.11) can be rewritten in the form

k1) 1

k+1 k k+1 k
(fij + aijug_ij) + ciju§+)1,j + dijug’jtl) + eijug’j)ﬂ) R (3.15)

i,j=1,.,n—1, k=0,1,....

The numerical experiment demonstrated that this method failes, especially
on the Bakhvalov grids. This method is sensitive to the grid refinement in
a parabolic boundary layer. We can see this in the example given below.

At the same time A" has a certain block structure. We use this prop-
erty and consider the block Gauss-Seidel method. We denote by U; =
(ui,l,ui,g,...,ui,n_l)T the vector whose components are the values u;; of
the grid function for fixed 7. Then the grid equations (3.13) can be rewrit-
ten as the system of three-level vector equations

-AU; 1 +BU;-CUy1 =F;, j=12,.,n-1, (3.16)
where A; and C; are diagonal (n — 1) X (n — 1) matrices. Here
diag (A;) = (@i1,i 9, ) Gi1)

) T
diag (C;) = (Ci1,Ci,25 1 Cin—1) »

F; = (fi,hfi,?a ---afi,n—l)Ta

and B; is a tridiagonal (n — 1) X (n — 1) matrix

bil —e;1 O o .- 0 0 0

—diz bz —e2 0 -~ 0 0 0

B, — 0 —dig bizs —e--- 0 0 0
0 0 0 0 - —din—2bin-2 —€in_2

0 0 0 o --- 0 bin—1 —€in—1
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The block Gauss-Seidel method for the system (3.16) has the form

BUMY —F, + 4, UMY L cu,

(3.17)
i=1,2,..n—1, k=01...
To determin ngﬂ), one have to invert the tridiagonal matrix B;. To do
this, the sweep method can be applied.
The pointwise representation of (3.17) has the form

—d;ju (’kfll) + b”u(kﬂ) - e”ugkjil) = fij + aUuSkJIr ]) + cijug_’i)l’j, (3.18)
i=1,..,n—1, j=1,.,n—1, k=0,1...

The numerical experiments showed the advantage of the block Gauss-Seidel
method over the pointwise one.

Moreover, the convergence of the block Gauss-Seidel method is indepen-
dent of the grid refinement in the vicinity of a parabolic boundary layer.
Here we prove this theoretically. Denote the error of the block iterative
method after k iteration steps by

Z(:’):u(k)_u”, 121,2,,771_1

(k)

We fix ¢ and take the maximum of the modulus of Tij which is achieved at

some jo:
R
Tijo| = X |y’ |- (3.19)
We subtract (3.13) from (3.18) and obtain
k+1 k+1 k+1 k+1
—di,jo" z(jo ) + bs o z(jo ) - €ijo z(]0+)1 Qi 50T z( 1 ])0 + CijoT z(—i-)l Jo*

Rearranging some terms to the right-hand side and taking modulus of both
sides, we have

(k+1) (k+1) (k+1) (k)

k41
bijo |Ti )‘ Sdijo |7 z]o—l‘+ei,jo Ti,j0+1‘+ai,jo Ti1,d0 | T Cisdo |Tit1,jo | -
Using (3.19) we rewrite the last inequality in the form

k+1 k+1 k

(Bigo — digo — €igo) [Ty )‘ < @igo [rT 0|+ i [Ttk o | - (3:20)

Thus, we get
k+1 k+1 k
—aijo [T |+ si e | = e [P, | <0 (3.21)
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where s; = b; j, — d; j, — €i,j,- Let us introduce the notation

b
pi= expo; — 1
b: .
where o; = b;h/e. Then Lpdzl = b; + p;. With this notation, dividing
bo; —
h;, + h;
the inequality (3.21) by % we get
k k
—(im1 + pic) [P+ i+ picy + i) [ | = i [P L[ < 0. (3.22)

Then we consider the k-th iteration step of the majorized Gauss-Seidel
process

—(bic1 + 2 )BT 4 (0 + piy + i)t — pt®) =0, i=1,2,. (3—2})’3
P g —g
Lemma 30. Let the inequality
(k)
7.70 - tl
be valid for all i =1,2,...,n — 1. Then the estimate
(k+1) (k+1) -
r{kt ‘<t Vi=1,2,....n—1 (3.24)

holds.

Proof. Because of (3.21) we have

bi—1 + Pi-1 | (k+1) pi B .
,]0 7 i—1,70 bi+,0i—1 +,0 z+1,]0 ) 1= 1,2,...,77,—1.
Taking into account (3.23) we get
b o ) )
£ = %tf{l) I B Si)l i=1,2,...,n—1.
bi + pi—1 + pi bi + pi—1 + pi
Now we use induction on 7.
1. For i = 1 we have
t(k+1) P1 (k)
bi+po+p
and
(k1) 141 (k) P1 (k) _ (k+1)
. =—7y <—t ' =1
L.jo bi+po+p |20~ by +po+m
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2. Let the statement (3.24) be valid for ¢ < m — 1. Then we obtain

br—1+ Pm—1 | (k+1)

m—1 7j0

_ + Pm RON
bm + Pm—1+ Pm bm + Pm—1+ Pm mtLdo
< bm—1 + Pm—1 (Bt 1) Pm (B gk,

- bm + Pm—1 + Pm m=1 bm + Pm—1 + Pm m+

(k+1)
mijO

The proof of the lemma is completed. O

Thus, the convergence estimate of the block Gauss-Seidel method coin-
cides with that of the pointwise Gauss-Seidel method for an ordinary differ-
ential equation and is independent of the grid refinement in the y-direction.

First, we investigate numerically the convergence of the pointwise and
block Gauss-Seidel methods for a model problem free of a boundary layer
on a uniform grid.

We consider the problem

—eAu+0iu=0 in (2, u=1 on I.
It has the exact solution u = 1.
1.0 M -0
0.8 | =1
0.6 (
|

04

0.2 Lj(f‘____,// \\ ;}
00W+11
0 32

Fig. 9. The error of the pointwise Gauss-Seidel method rgso)j.

In the Figures 9 and 10 the behaviour of the error
sg’ko)ﬁ = |u(z;,0.5) — u® (z;,0.5)

along the middle line y = 0.5 after & iteration steps is demonstrated for the
pointwise and block Gauss-Seidel methods respectively. As the initial guess
we take

u® =0, i,j=1,.un-1 and V=1, §,j=1..,n-1
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1_0 _AIM +0
0.8

| .
0.6
04
B
0 32
Fig. 10. The error of the block Gauss-Seidel method rz(%) 5

The use of the cascadic algorithm allows to improve further the conver-
gence. With this approach we take the interpolation of the solution on a
coarse grid as the initial guess on the finer grid with the halved mesh size.

Now we consider the construction of the interpolation from a coarse grid
to a finer one.

In the numerical experiments we applied the linear interpolation in the
y-direction

*

Yi ~ yk Uj,j—1 + 7yk — :.Uj—l Uq,j (3.25)

h;

ul (i, ;) =

where g} € [y;—1,Y;], bj = y;—y;j—1. Let us show that with this interpolation
the order of accuracy holds when the nodes of the grid are defined by (3.9).
To do this, we rewrite (3.25) in the form

o (zi,95) = ouij + (L— Quiy, a=(y; —yi) /by

Using the Taylor expansion with the second-order reminder term for u; ;_;
and u; ; about (z;,y5), we have

|w! (@i, y5) — u(ms, yi)| < lowij—1 + (1 — a)us; — u(s, yi)|
1 * * *
< 2 (a(yr —yj—1)” + (1 — o) (y; — yp)?) |Bou(zs, yx)|  (3.26)
< erhf |Oasu(zi, yi)| < coh?®.

Here we used the estimate (2.133) from Lemma 24 and the definition (3.9)
of the grid.
Note that the estimate (3.26) for the Shishkin grid has the form [58]

|uI(xi,y,";) - u(xl,y,";)| < cgh?In? (1/h).
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In the z-direction the grid is uniform. With decreasing the mesh size from
2h to h, we transform the grid equations (3.13) to determine the values of
u(zs,y;) fori=2m—-1,m=1,2,..,[n/2],j=1,2,.,n— 1

I T I = f.. i1 Ui s
—dijui i1 + bijui; — it j1 = fig + GijUio1,5 + CiUit,j-

The values of u;_1,; and u;11,; at each level ¢ = 2k — 1 are known from
the previous grid. Therefore to determine the values of u(z2,,—1,y;) at each
level m one has to solve the system of linear algebraic equations with the
tridiagonal matrix Bag—1, m = 1,2, ..., [n/2]. We show that in this case the
order of convergence also holds.

Table 7. The number of iteration step in the Gauss-Seidel method.

Gauss-Seidel method

n pointwise block cascadic algorithm
Bakhvalov|Shishkin|Bakhvalov|Shishkin (Bakhvalov|Shishkin

32 28 15 2 2 2 2
64 97 31 2 2 2 2
128 355 70 3 3 2 2
256 1307 178 5 5 4 4
512 * 896 19 19 14 15
1024 * * 151 152 124 125
2048 * * 1052 1049 877 891

* — convergence was not achieved after 2500 iteration steps

Consider the error

i=2m-1, m=12,.,[n/2], j=12,..,n—1

61']' = |’U,ij bt ’U,ZI]| )

It satisfies the system of equations
—dij0ij-1 + bij0ij — €ij0ii1 =i, |0y < esh®
fori=2m-1,m=1,2,..,[n/2],j =1,2,...,n — 1. Then we have

(aij + cij) oyl < max (6],

ax .
2, %,7=1,2,...,n

4,j=1 o

Taking into account the definitions of a;; and ¢;; we get

ii| < coh®.
i,j:lI,IQI?’.).(,’n—l |5Z]| - 66h

The number of iteration step that is required to achieve the convergence

criterion is shown in Table 7 for € = 1/2560 on n x n grids. As the con-

vergence criterion we used the following restriction on the residual after k
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iteration steps:

max
i,j=1,2,...,n—1

(LhU(k))ij _ fz’j‘ < Ak,

We put
Ah — 10—5H2 . 21—H/h

where 1/H is the nodes of the coarser grid.

3.5 Discussion of the numerical results

We write the solution of the problem (3.3)—(3.4) as the series

U= Z Yntn (x) sin(mny) = Ssor (3.27)
n=1
where

Un(z) = Crpexp(ATz) + Cop exp(Afz) — 1, (3.28)

exp(A3) — 1 1 — exp(A})

Cin= ) n = ) 3.29
"= a0 —en(q)” O a0 —ew(y) O
n_ 1++/1+(2e7n)? n_ 1—=+/1+ (2e7n)?

)‘1 - % ’ )‘2 - % ’ (330)

0, if n is even,

W= L ifnisodd, (3.31)

e(mn)3

Lemma 31. The series (3.27) converges uniformly for z € [0,1].

Proof. Consider the sequence of the functions {t,(z)},-, and show that
it is uniformly bounded on z € [0, 1].
Let us calculate the derivatives v, (z), ¥/ (x):

P, (z) = ATCrpn exp(ATz) + A3 Cop exp(Af ),
"(x) = ANP2Chp exp(APz) + A32Cyy, exp(Aa).
Because of (3.29) and (3.30) the following inequalities hold:

AT >0, A2 <0 Vn=1,2,..,
CMSO, CQnSO Vn:1,2,....
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Since
n(z) >0 Vze[0,1] Vn=1,2,..,

tn(z) is convex function on [0,1]. At the point of maximum the equality
¥, (o) = AT Crp exp(ATzo) + A5 Cay, exp(Afzo) = 0
is valid. Then we have

o (:L. )_ )\_g exp()\?) -1 1/(AT=23)
PROT= AN exp(Xg) — 1 ‘

Calculate li_>m |%on (20)|. Let n be sufficiently large, for example, 2ewn >> 1,
n (o0}

then A} = 7n, and A} ~ —7n. It is easy to calculate that

- _1 1/27n

exp(zo) = (—%) = exp (1/2).
Then we get

-t _exp(mn) _

Un(eo) = o g exp(en/2) + L ZF S exp(—mn/2) — 1
2

- exp(7n/2) + exp(—wn/2) B

This yields
Tim_ [ (z0)| = 1. (3.32)

Thus, the sequence {t¢,(2)},- ; is uniformly bounded on [0, 1], in other
words, there exists such a constant M that

W@ <M Vzel0,] Yn=12, ...

The sequence of the functions {sin(wny)},-, is uniformly bounded on [0, 1]
by 1.
Therefore, the terms of the series (3.27) satisfy the inequality

[Ynton () sin(rny)| < My,, VYn=12,.. (3.33)
where -, are the terms of the convergent series

AM & 1

S=—-—7y ———
emsd i (2k —1)3

(3.34)



118 Karepova E.D., Shaidurov V.V.

Table 8. The error Rgéf for e = 1073,

Bakhvalov grids Shishkin grids
n R7;1000 | pr2000 | pn3000 | pn1000 | pn.2000 | pn.3000

32| 7. 16010 3| 7. 16010 3|7 16010 3|7 22410 3|7 22310 3|7 22310 3
64| 1.54510-3 | 1.54610-3 | 1.54610-3 | 2.99310-3 | 2.99210-3 | 2.99210-3
128 6.82419-4 | 6.81219-4 | 6.81219-4 | 1.16510-3 | 1.16410-3 | 1.16410-3
256 2.47110-4 | 2.46010-4 | 2.45910-4 | 4.01319-4 | 4.00810-4 | 4.00910-4
512| 7.38910-5 | 7.20010-5 | 7.18810-5 | 1.20919-4 | 1.20310-4 | 1.20210-4
1024| 2.81910-5 | 1.90910-5 | 1.88910-5 | 3.63410-5 | 3.37910-5 | 3.37410-5

Table 9. The error Rgéf for e = 1072.

Bakhvalov grids Shishkin grids
n R7;1000 | pr2000 | pn3000 | pn1000 | pn.2000 | pn.3000

32| 1. 75510 3| 1. 75510 3|1 75510 3| 3. 62910 3| 3. 62910 3| 3. 62910 3
64| 4.89610-4 | 4.89610-4 | 4.89619-4 | 9.57910-4 | 9.57910-4 | 9.57910-4
128 1.25419-4 | 1.25410-4 | 1.25410-4 | 2.43510-4 | 2.43510-4 | 2.43510-4
256| 3.15810-5 | 3.15910-5 | 3.15910-5 | 6.11310-5 | 6.11110-5 | 6.11140-5
512| 7.91610-6 | 7.91910-6 | 7.92010-6 | 1.53110-5 | 1.53010-5 | 1.53010-5
1024 2.61410-6 | 2.12010-6 | 2.12010-6 | 3.98710-6 | 3.97710-6 | 3.97710-6

Table 10. The error R™X

abs

on the grid (3.9).

e=1072 e=10"3

n 7.,1000 7.,2000 7,3000 7.,1000 7.,2000 7,3000
Rabs Rabs Rabs Rabs Rabs Rabs

32| 1.5410-3 | 1.5410-3 | 1.5410-3 | 3.2210-3 | 3.2210-3 | 3.2210-3
64| 4.4610-4 | 4.4610-4 | 4.4610-4 | 1.5710-3 | 1.5710-3 | 1.5710-3
128| 1.1610-4 | 1.1610-4 | 1.1610-4 | 6.8510-4 | 6.8510-4 | 6.8510-4
256| 2.9510-5 | 2.9510-5 | 2.9510-5 | 2.4819-4 | 2.4610-4 | 2.4619-4
512| 7.4310-6 | 7.3910-6 | 7.3910-6 | 7.3710-5 | 7.2010-5 | 7.1910-5
1024| 2.5510-6 | 1.8510-6 | 1.8510-6 | 2.8310-5 | 1.9010-5 | 1.8910-5
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of numbers. Then according to the Weierstrass criterion of the uniform
convergence of functional series, the series (3.27) uniformly converges.O
The estimate (3.33) shows that the series (3.27) converges at least as
(3.34). We denote by Sk the partial sum of (3.34). The following estimate
holds (see [54]):
M 1

- Sk| <= =,
|5 = Sk < emd K?

Therefore to achieve the given accuracy d it is necessary to take at most K

terms where
| M
ET

From (3.32) we have that the constant M is close to 1.
In the numerical experiments the series was calculated within an accu-
racy & = 107°. The exact solution was calculated as the partial sums S19°,

52000 and S3990. In Tables 8, 9, and Figures 11, 12 the numerical results are

presented on the sequence of grids for £ = 1073, 10~2. We use the notations

Ry, = L |ufy — Sy (i, )| -
Here uj; is the solution of the discrete problem at the node (;,y;) of the
(n+1) x (n+ 1) grid, K is the number of the terms of the series. In the
Figures 11, 12 the values of Rgg?;ooo(n) are marked by the numbers 2, 3, and
4 for the Shishkin, the Bakhvalov grids and the grid (3.9) respectively. For
comparison the straight lines with slapes tgy = 1 and tgy = 2 marked by
1 are shown in Figures 12 and 11 respectively. For ¢ = 10~2 the method
has the second-order convergence. When ¢ decreases to 1073, the method
becomes first-order convergent.

Finally, we discuss the results obtained in the two-dimensional case with
the special approximation of the right-hand side similar to that considered
in Chapter 1. We considered the Dirichlet problem

—cAu+h((1+2z)u)y=f in 1,
u=0 on I

where
exp(—2/¢)
1—exp(—2/e)’
The solution of this problem has the parabolic boundary layer near the
boundary I3, and the regular one near Ipy;.
Table 11 contains the results obtained on the Bakhvalov grid with the
fitted quadrature rule with the special and standard approximations of the

f=62+22c—-2+2d, d=
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1077
107°
1
2
3,4
10_0 1
32 64 128 256 512 1024
Fig. 11. The error Rzlﬁooo(n) for e = 1072
107"

1072 273*\\\\\\\”*\\\\
ml

o \\\<>:::::::Z;:::::T\-\
1074 \-
\@\@ 5
3,4
1075 ‘ ‘
32 64 128 256 512 1024

Fig. 12. The error R™2%°(n) for ¢ = 1073,

abs

Table 11. The error R}, for standard and special approximations of the right-
hand side.

approximation n
of the right-hand side| 32 64 128 256 512 1024
standard 3.9910-2{1.9910-2|9.6810-3|4.5210-3|1.9310-3(6.2710-4
special 4.3210-3 2.6510—3 1.3610—3 6.2610—4 2.3310—4 1.4010—4
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right-hand side for € = 1/2560. The results demonstrate that the application
of the special quadrature rule for the approximation of the right-hand side
improves the accuracy.
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Triangulation of two-dimensional multiply connected
domain with concentration and rarefection of grid

Pyataev S.F.

Introduction

Wide use of the finite element method for solution of various kinds of
problems raises the requirements to the level of automation of domain frag-
mentation. There are algorithms and programs allowing to construct uni-
form grids on simply connected domains [1-4]. The advantages of the al-
gorithms are their universality with respect to the shape of boundary of
the domain as well as the possibility to triangulate simply and multiply
connected domains with concentration and rarefaction of grid; the latter
is attained by division of the initial domain into a number of simply con-
nected domains and fragmentation or consolidation of one-dimensional final
elements on boundaries of some subdomains. An obvious disadvantage of
the triangulation algorithms for simple connected domains when applying to
multiply connected domains or concentration of the grid is a great amount
of handwork: division of the domain into subdomains, fragmentation of each
boundary, input of information, etc. The idea of triangulation algorithm for
multiply connected domain with concentration of grid described in [5]. It
avoids the necessity of division of the domain into a collection of subdo-
mains and at the same time retains the disadvantage connected with hand
fragmentation of each contour (with the exception of the simplest elements
of the contours: linear regions and arcs). Except that, indistinctness of the
introduced in the paper requirements with respect to the properties of a new
node being constructed (proximity to previously constructed node, proxim-
ity to one-dimensional finite element, simultaneous proximity to the node
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and the element, etc.) makes the programming considerably more difficult
and forces the user either do develop conditions for a new node being con-
structed or quite reject the algorithm.

For the purpose of constructing a completely automated process of tri-
angulation of arbitrary two-dimensional multiply connected domains, an
algorithm of fragmentation for arbitrary piecewise smooth closed boundary
contours is developed in the present paper.

In the third section, on the basis of the scheme proposed in [4, 5] and
representing a consecutive filling of domain with triangular elements, the
process of triangulation of the domain is constructed. The process of fill-
ing starts from the boundary which is preliminarily fragmented into one-
dimensional finite elements. In the course of construction of triangular el-
ements the boundary of the domain being not yet triangulated (following
[4], we will call it current grid boundary, CGB) represents a number of con-
tinuous closed piecewise curves with possible self-intersections. A detailed
description of construction of new nodes and elements is given in this sec-
tion; in particular, the criteria of selection of previously constructed node
(or construction of a new one) are given. And as a consequence, the criteria
of construction of an element are given in the case when some regions of
CGB close in. In the course of fragmentation of the boundary of domain
and its triangulation a function of steps is used which adjusts the sizes of
one-dimensional and triangular finite elements according to their position
in the domain. Any positive function can appear as the function of steps;
the principles of its construction are given in section 2.

Presentation of both the algorithms is given in a form convenient for
programming. In appendices some auxiliary procedures are given, which
are necessary for the work of the program and which, apparently, should be
designed as subroutines.

1 Some recommendations on choice of the function of
steps

In many problems one can beforehand make certain assumptions on sub-
domains of large gradients of the sought functions, appearing, as a rule,
in the locations of concentrators of different kind, on lines of jump of co-
efficients of the problem, due to singularities in some points of boundary
conditions, in the points of sharp change in the character of the boundary,
etc. For concentration of the grid in such subdomains a necessity appears
to construct finite elements with a step less than the basic step hg used for
larger part of the domain (2. Since during triangulation the triangular ele-
ments are constructed successively, their size can be determined according
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to their locations, by means of certain positive function of steps h(z,y) with
parameters responsible for the ”centers” and ”sizes” of the subdomains of
concentration. These parameters should be chosen so that on leaving the
subdomain the sizes of triangle elements would be of the order hg.

Apparently, exact recommendations on construction of the function of
steps cannot be given owing to the absence of exact definition of the notion
of the domain of concentration. Therefore let restrict ourselves to formu-
lation of general principles of construction of these functions, extending
descriptive ideas of one-dimensional case to two-dimensional one. Let in
one-dimensional case a qualitative graph of the function of steps is repre-
sented on Fig. 1.

h(z)

1 — 01 1 z1+ 61 T2 — d2 T2 T2 + d2

Fig. 1. An example of graph of the function of steps.

It is convenient to represent the function of steps in the form of a sum

n
h(z) =ho+ Y _(hi — ho) fi(z, i, 8:) ,
i=1
where d; is ”characteristic size” of the i—th domain of concentration; z;
is center of domain of concentration; f; is equal to 1 in the point z; is of
zero order outside its domain of concentration. In this case an approximate
graph of the function f; can be represented like on Fig. 2.

fi(z)

Ti—0; T T+0;
Fig. 2. An approximate graph of the function f;(x).

So, one can take f;(z) as one of the variants:

n;\ —1
ch™ "™ (—x;%), (1+ ) : exp{_

r—x;

0;

r—x;

d;

ni}
?



Triangulation of two-dimensional multiply connected domain 133

or o
r—x;| " .
ki , if xe(xi—di,xi+6i),

1-—
d;

filz) =
0, if o ¢ (z;— &,z + ).

Here the degree n; is positive and characterizes the value of gradient of the
function f;.

However, an expansion of these variants over two-dimensional case by
direct introduction of the second coordinate would not embrace the cases
when the domain of concentration is stretched not along one of the axes
but along some direction determined by a vector (cos a,sin a). To eliminate
this shortcoming, equip every such domain with a local coordinate system,
in which the direction of stretching of the domain coincides with one of the
new axes. Evidently, this transformation of coordinate system should take
into account transfer and rotation, i.e.,

;= (& — x;) cosay; + (y — y;) sin a,

Ui = —(z — z;) sina; + (y — y:) cos a,

where (z;, y;) are coordinates of the center of i-th concentration; «; is angle
of rotation of the axes of i-th concentration.

Then the functions of steps in two-dimensional case by analogy with
one-dimensional case can be taken in the form

h(il!,y) = hO + Z(hl - hO)fi("I’.ayaxiayiaaiaﬂiadi)a
i=1

where 3;,8; are ”characteristic sizes” of the domain of concentration, and
fi can be presented, for instance, as

~ . -1 ~ N\ T ~ N\ MmN —1
(o (5) o (3) - () () )
={-(3) -()

where 2; = (z; — Bi,z; + B:) X (y; — 0;,y; + 6;), the degrees n;, m; as before
are positive and characterize the gradients of the functions f; along the
direction (cosq; ,sin ;) and orthogonal to it.

i

|
0;

m;

, if (x,y) € 1,
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2 Fragmentation of the boundary of multiply
connected domain

Let the boundary of a multiply connected domain be formed by N piecewise
smooth closed contours given in some Cartesian coordinate system Ozy in
parametric form.

Consider a piecewise smooth contour I" (its index is omitted) formed by
L smooth curves v,, n =1,...,L, whose parametric equations are

(z(t), y(t)) = x(t) = zn(t), ¢, <t <t (2.1)

where ¢, t} are the limits of variation of the parameter ¢ for +,. From the
conditions of continuity and closeness of the contour I' it follows that

Zo(th) =xnp1 (), n=1,...,L-1,

z1(t7) = zL(t]).
Parametrization (2.1) must be such that for the inner contour I" the direc-
tion of encircling under increase of the parameter ¢ would be clockwise, and
for the external contour would be counterclockwise.

Fragmentation of I' is performed successively, starting from the first
smooth curve ; : & = 1 (t). The first node on I" is y; = x1(¢] ). Assume
that [ — 1 first curves of the contour I' are fragmented already, the last
constructed node on these curves is y,, , = ;1 (£ ;) = z;(#) and a part
of the curve +; is fragmented, with the last node y,,_,+x = @;(t,) where
tﬁc is the value of the parameter ¢ for the last node, tﬁc € [tl_,t;r). Then we
construct next node of the curve v by 3 steps.

Step 1.

Denote by s;(t.,t) the length of a part of the curve ;, corresponding to
the values ¢, ¢ :

t
si(th, ) = / () |dt, te b6,
tk

where &(t) is derivative of z(#) with respect to t.

A new node Yy, _, 441 is constructed as follows: the value of the function
of steps h(z,y) is calculated in the last constructed node y,,,_,+r and the
solution £ | of equation

81t 1) = h(Yni_a+k),  t € [t 1], (2.2)

is looked for. Suppose that solution of this equation exists (the contrary is
considered in step 2). In this case it is unique due to positiveness of | &;(t) |
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(may be, with exception of finite number of points which do not influence
uniqueness). According to the obtained value £}, we calculate z; (¢, ) and
look for the solution #}_, of the equation

1
si(th,t) = [h(Yni_ix) + Bz (Fhs1))]- (2.3)
Suppose that this equation has a solution as well (the contrary is considered
in step 3). Consider the inequality

d—si(th,th )
sl(ti:’ti:—i-l)

the left-hand side of which is the relative difference between the length of arc
and the length d of segment corresponding to the arc. The inequality charac-
terises deviation of the arc from segment of stright line. Value of the param-
eter ¢ is specified by the user (for instance, & = 0.01). If the inequality (2.4)
is satisfied, then we declare the point z; (¢, +1) as a new node Yn,_, x+1 and
turn to construction of the next node. The declaration of the constructed
point as a new node is substantiated by the fact that due to validity of
equation (2.4) the one-dimensional finite element [Yyn, , 4k, Yni_q+k+1] AD-
proximates the corresponding arc of curve good enough, and its length d
under h(z,y) smooth enough correlates with the average value of the func-
tion of steps over the ends of this element (see right-hand side of equation
(2.3)). Otherwise, if the inequality (2.4) is not true, we successively decrease
the right part of equation (2.3) by certain value (for example, by one tenth
of the right-hand side) till the inequality (2.4) would be true. This situa-
tion appears when the length d of one-dimensional element calculated in
accordance with the function of steps is ”large” enough for acceptable ap-
proximation by this element of the arc which corresponds to it. Therefore
successive decrease of this length is performed down to the value required
by inequality (2.4). After that, we turn to construction of the following node
Yni_1+k+2-

Completion of the procedure of construction of new nodes on [-th curve
of the contour I' (and, respectively, on the whole contour I') is connected
with the absence of solution of equation (2.2) and is described in step 2.

Step 2.

Now, consider the case when the equation (2.2) does not have solution,
ie.,

<e, d :l Yni_1+k — Ly (ti:—i-l) |7 (24)

st(th, t]) < h(Yni_o4k)-

This means that the last constructed node y,,_,+# is ”close” to (tl+), and
construction of a new node by means of the function h(x,y) is impossible.
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Denote by §; the length of the remainder ~;, and by dj denote the length of
the last constructed element:

o = sl(tint;r)a dy, :l Yni_14+k—1 — Yny_1+k | .

O au(t)) 5 _—mt) @)
Ynyp_1 4k / \ . 0 / N
Ynp_ 14k /
" " Yny_1+k
Y
Yny_1+k-1 Yny_1+k-1 Yny_1+k-1
a: 0 < gidg b: edy <6 < 0.5dg c: 0.5dr < 8 < dp,

Fig. 3. All possible situations when ¢; < d.

In Fig. 3 the situations are shown when §; < dj and displacement of the
last constructed node takes place into the last point a; (tl+) of the curve ;. In
Fig. 3a, or a redistribution of é; occurs over all the previous one-dimensional
elements approximating ~; proportionally to the lengths (Fig. 3b). In Fig.
3c a new one-dimensional element with the length dj, is constructed, and
new residual §; — dj, is introduced and redistributed as above, over all the
elements proportionally to their lengths.

Thus, if the residual §; satisfies the inequality

& < erdy (2.5)
where £; is small enough, for instance, 0.1, then we displace the last con-
structed node y,,_, +r into the last point of 4; :

Yni_1+k = 21 (t;r)

and turn to construction of nodes on the next curve v41. If (2.5) is not
valid, we consider the inequality

& < 0.5dy,. (2.6)

If (2.6) is true, then the number of nodes on +; remains the same, and the
residual d; is redistributed over all arcs constructed on 4, proportionally to
their lengths. Denoting by §; the length of that part of the curve +; which
was passed when constructing the nodes:

k—1
§=> s, shaa=sltht,), th=t. (2.7)
=0
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Then the lengths of new arcs s;f"li 11 are determined through the lengths of
previous arcs sé’i 11 according to the formulas

st =91 (1+8/8), i=0,...,k—1 (2.8)
Successively solving the equations
st ) =sth, =4, i=0,...,k-1, (2.9)
we obtain new values ¢*! and as well as new nodes on 7; :
yn_ o =mEh), i=0,...,k—1, (2.10)
Yniarr = ().

After that we turn to construction of nodes on the next curve ..
If the residual 6; does not satisfy the condition (2.6), then consider a
new inequality
8 < dy. (2.11)

If this inequality is true, i.e., the length of the remainder part of v, is less
than the length of the last constructed one-dimensional finite element but
exceeds its half-length due to violation of (2.6), then the number of nodes
on 7; is increased by one, new residial is introduced

5l:3l_§l

where s; is lenfth of 7, and

k-1

§ = s + st

1= i+l k—1,k>
i=0

Then we come to (2.8)-(2.10) with new &y, §; and with addition of one more
arc, the length sﬁg’ 41 of which is equal to the length of the last constructed
arc s,_, .. At that, it is necessary to increase the value of k by one in

(2.8)-(2.10).
In the case when (2.11) is not satisfied, we consider the equation
sl(tint) =dg, t€ [ti,,t?_], (2'12)
which has a solution due to inequalities

Sl(ti,,t?_) =6 > dy,

Sl(ti,,ti,) =0<dpg.
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The value t} , ; obtained from (2.12) is tested for realization of the inequality
(2.4) and further in accordance with the algorithm, with the difference that
if (2.4) is not satisfied then not the right-hand side of (2.3) is successively
decreased, but the right-hand side of (2.12).

Step 3.

Consider the case when the equation (2.3) have no solution. Then after
obtaining #,, ; from equation (2.2) we come to the inequality (2.4), in which
tﬁc 41 18 substituted by f’k 41~ If the inequality is true, we declare the point
wl(fﬁc +1) 8 anew node Yy, _,+,+1 and turn to construction of new node on
~;. Otherwise successively decrease the right-hand side of the equation (2.2)
till (2.4) is satisfied, after that turn to construction of the next node.

The described algorithm allows to decompose the boundary of domain
into one-dimensional finite elements (further called units), each of them
being specified by a pair of integers n; and ne — numbers of its nodes — and
their coordinates. The information on successive order of the units can be
stored in two one-dimensional arrays K and M.

1) k; = K (i) is the number of units on the i-th contour of CGB, i =
1,...,N.

2) m; = M(j), mjy1 = M(j + 1) are the numbers of the first and
second nodes of j-th unit, respectively, if j # > i k; for alln =1,...,N.
Otherwise, i.e., there exists such n, that j = >;*; k;, then the number of
the first node of such a unit is M (j) as before, and the number of the second
node is M (X1 " k; +1).

It is necessary to stress that the length of the array K changes in the
process of triangulation, what is connected with change of the number of
connectedness of the domain being not triangulated yet. The length of M
also is not fixed, since either M is supplemented with new units, or the
exhausted units from M are removed (the units which are not included in
CGB on the next stage of construction of element).

3 Triangulation of a domain

It was noted above that the triangulation algorithm is based on successive
filling of the domain with triangular elements. When filling the domain
with the elements, CGB changes and in general case represents a number
of closed broken contours. The number of connectivity of the domain being
triangulated and the number of units of CGB change and can exceed the
initial quantities. Therefore in the program one should watch that the length
of the arrays K and M (see section 3) would not exceeded the given one.
Under coming together of different parts of CGB or in the domains
of sharp changes of the function h(z,y) the the triangular elements being



Triangulation of two-dimensional multiply connected domain 139

constructed can be of an elongated form, and that can result in considerable
errors when using this grid in finite element method. In order to avoid this
defect, after construction of the grid an improvement is made which little
changes compact triangles and significantly changes the elongated ones. The
improvement of the grid is performed by means of the relations

n
1 &
= — E wki
e

where xj, is the node being corrected; ny, is the number of nodes surrounding

the node xj; xy, are the surrounding nodes. The number nj, and nodes xy,

are determined by means of the triangles possessing the common vertex xy.
The triangulation algorithm consists in the following,.

Step 1.

Find an unit Zmin of CGB which has the minimal length [,,,;, and the
nodes z!,,,,z2,;,. Denote by z. .zt the units preceeding and following
Zmin, respectively. Choose from z, . ,z, . an unit 2. which forms with
Zmin the minimal angle By,in (Bmin = min(81, 82); the angles 81 and 3,
are measured counterclockwise from 2y, to z,.;, and from 2. 10 Zmin,
respectively). Denote the nodes of the choosen pair of nodes (they are either
Zrins #min OT Zmin, 2. ) by &, gTn glvin If B, < 80° (otherwise we
come to step 4), then go to step 2.

min

Step 2.

Make a test of getting into the triangle A(zmin, 25,;,) (See Appendix 1)
of the nodes of CGB, with exception of the nodes forming zmin, 25:n- If
there are no such nodes, come to step 3, otherwise from all the nodes got
into A(zmin, 2 choose a node y. closest to zy,i, (see Appendix 2) and

go to step 12.

mzn)

Step 3.

Consider a circle with radius |£§*™® — 7%"|/2 and the center . which is
the midpoint of the third side z in A(zmin, 25:0), Te = (T + ) /2.
If nodes of CGB do not get into the half of the circle external with respect
10 A(Zmins 25, then come to step 13. Otherwise from all the nodes choose
the closest to z node z,, and divide the quadrangle O(2min, 25 ins Tm) SO
that the minimal angle of the resulting triangles would be maximal (the
choice should be done from two variants of division of the quadrangle into
two triangles). The consideration of the quadrangle is necessary in order to
avoid constructing elongated triangle with the vertices %", zJ*", z,,, since
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x,, can be located close enough to z. Further, declare both the obtained
triangles as elements, remove Zmin, Zp,i, from CGB, determine connectivity
of the domain, add two new units [T, T,,], [£m, £5*"] (see Appendix 8)
and go to step 1.

Step 4.
Construct the point
1 2

1
Ly = w:mn + hCPn7 w:mn = §(wmzn + wmin)‘ (31)

Here n is the normal to z,,;, directed inside the domain:

(2,0 — L) X = lpines, es =(0,0,1);
hep is average value of the function of steps over the vertices of equilateral
triangle constructed on the basis 2,y :

3

hcp = %Z h(éz)a éj = wrjm'na .7 =1,2 €3 mzn + %glmznn
i=1
Under certain conditions described below, the point x, will be a new
node, and the triangle A(zpin, €.) will be a new element.
On the basis of the unit z,,;, construct a rectangle (2, one of which sides
is Zmin and the another is directed normally and its length equals 2H. Here
H is the altitude in A(2yin, ) dropped on zpy, :

2H = \/4|$* - mzn l?mn

By means of the control domain (2, let ascertain the criterions of proximity
of the new node z,. to the previously constructed nodes and units. If in
certain sense x, is close to nodes or units, then we refuse to construct the
new node and choose the best node from the close ones for construction of
the new element.

Let define two sets My and M; as follows.

My is the set of numbers of nodes of CGB, which got into (2, with
exception of the numbers of nodes ), and z.2;,

My={n: z, €2, z, # ] i=1,2}.

min?

M, is the set of numbers of the units of CGB, which crosses 9(2, with
exception of the number of the minimal unit 2., :

Mi={n: z,N8R #0,2, # Zmin} -
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Introduce two additional points z; and 2 :

zi=zl, +(-1)AlT, i=1,2,
where .
T = L. (wr2mn _wrlnin)7
min
1 C
Determine the angle £ at the vertex z¢ in the triangle A(z.,21,22),
where z¢ = 21, if 2, = 2., and z¢ = 2, if 25, = 2,1 (see step 1).

If one of the sets M, or M; is not empty, then come to step 5.
Determine the angle a; at the vertex . in the triangle A(z1,2z9,%4).
If ay > 30° and Bpin — € > 20°, then declare the point x, a new node and
come to step 2.
If a; < 30°, then redetermine the point &, so that the new node has
a; = 30°:
Ly = w:mn + |Z2 mznl tg 757 -

At that, if 8, — 75° < 207, then come to step 2, else to step 14.

The introduction of the points z; and z is obliged to the fact that
the unit 2,,;, at one of the previous steps of construction of the element
can be produced by different ways: through connection of two neighbouring
units (step 13), through connection of two previously constructed nodes
(step 12), through construction of a node (step 14). Therefore the length
of Zmin in the domains of larger gradients of the function of steps h(x,y)
can be 2-4 times less than the value h(x?,,,,). Since after construction of
the grid an improvement is made which allows to extend z,,;, somewhat
in such domains, it is better to estimate the quality of the element being
constructed through the points z1 and z9 which are midpoints between
Thin> Tonin — sh(@Syn)T and @2, %, + $h(xC,;,) T, respectively. Thus,
in the course of construction of a new node, in such domains we analyse
not the elements constructed according to the new node but their possible
transformations after inprovement of the grid. The estimation of value of

the angle B, — & is performed in order to avoid acute angles between the

units zmzn’ [w}mrm wz] (lf zmzn = zr_mn) or [w*7wmzn] zmzn (lf zmzn — zrtin )

In Fig. 4 a situation is shown when declaration of the trlangle A(Zmin, Tx)
as a new element results further in appearing the triangle A(z}, ., z.) with
acute angle. Therefore in such situations we will refuse to construct new
node and (under favourable conditions) take as an element A(2pin, 2
i.e., come to step 2.

mzn)
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Fig. 4. In this situation there is no new node.

The analysis of the angles a; and B — € was introduced into the
initial variant of the algorithm after consideration of a large number of
experimental calculations made in the domains of large gradients of h(x).
One of examples is shown in Fig. 5: a grid is shown before (Fig. 5a) and

Fig. 5. The grid before a) and after b) improvement.

after (Fig. 5b) its improvement. From this, one can see that if the analysis of
the elements being constructed is performed over the lengths of their sides
(see Fig. 5a) but not over average values, then a sharp enough transition
is possible from the elements of small sizes to elements of large sizes, what
entails poor quality of elements in the domains in such vicinity.

Step 5.
If M, # 0 (else go to step 9), then choose from My a number m for
which the corresponding node x,, is closest to 2. To do this, determine
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the distances l; (see Appendix 2) from the points #;,i € M,, t0 2Zpin and
choose
Im = Zrélllét li > m. (3.2)
In the triangle A(x,,, 21, 22) consider the angle a at the vertex x,, (z;
are determined in step 4). If a > 30° (else come to step 8), then test an
intersection of the segment [z, ) ;,] with the units of CGB with numbers
from M; without the nimbers of units neighbouring the nodes &,,z. ;,
(see Appendix 3). For convenience, denote &, by y.. Introduce an integer
parameter IND of switching and set IND = 0.

Step 6.
If there are no intersections, then go to step 12 if IND = 0 or to step
14if IND =1.

Step 7.

There are intersections. With use of the nodes of the intersecting unit z,,
construct oriented triangles A(2min; k), Zr are nodes of the unit 2, k €
{k1,k2} (see Appendix 4). When constructing these triangles, one should

Fig. 6. Testing rectangle 2.

make sure of their existence (in Fig. 6 oriented triangle A(zyin, Tk, ) does
not exist; &,, is the node closest t0 zmin)-

From these triangles (if both exist) choose A(zmin, k), ki € {k1,ka2},
whose minimal angle is larger (further, we will denote the minimal angle
of any triangle A(z,z) by a(z,x)). Having denoted the choosen node xy,
by y., test an intersection of both lateral sides of A(zpin,y«) with all the
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units of CGB except the minimal one and those adjoining it and node y..
Then come to step 6.

Step 8.

The closest node &, is far enough from z,,;, (since a < 30°), therefore
displace the constructed point &, to 2,,;» so that the distance between its
new location (denote this point by y.) and 2., would be equal to I, /2:

1
Y = a:fnm + §lmn,

and l,,, is defined in (2).

L wml Zmg
2
Ymo
1
Ly
| =
s
|
| Y
1
|
|
AN
N | I I3| /
i e
It !~
1 2

Fig. 7. Test of an intersection rectangle 2 with units.

In the triangle A(z1, 22,¥y«) determine the angle £ at the vertex z, de-
fined in step 4. If B, —& < 20°, then come to step 2, else test an intersection
of one of lateral sides of A(zyin, Y«) with the units with numbers from M,
and come to step 6, setting IND = 1.

Step 9.

If Bin — € < 20°, then come to step 2, otherwise choose from all the
units intersecting 02 the units z,,, and z,,, which are ”closest” to zpn.
For this, consider all the points of intersection y} of the units z,, k; € M1,
with the lateral side I of rectangle {2, which comes through z! . . and
analogous points y? for I's. Then the numbers m; and my are determined
as
j

: J
min |yz ~ Thnin

=m; i=1,...,N,.
e, | jr ] s 3 iVp
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If I and I intersect different ”closest units ”, then N, = 2 (Fig. 7). If one
of the lateral sides I'; is not intersected by the units (Fig. 6), or if I7 and I
are intersected by the same unit (Fig. 7), then N, = 1, and consider only
the number m; (if necessary, m; is specified as ma, Fig. 8a).

m2
r— — — — %™

2
I Vi,

1
| | @,
| | : | |
01 Tmy 01
I | n r)
L 1
1 2 1 >
Lomin Zmin Tmin Lomin Zmin Tmin
a) b)

Fig. 8. All possible situations when lateral sides of {2 intersect with units.

Consider oriented Az, &), @ =1,...,Np; @, is defined in (3.1).
If such oriented triangles do not exist (that is possible only in the case,
when the ”closest” intersecting unit is unique and comes through I3 and
I'; between 2z, and ., see Fig. 8b), then denote the unit 2,,,, by 2, and
come to step 7. Under existence of A(zy,,,®.) consider the angles ; at the
vertex &, in these triangles, ¢ = 1,..., Np. If a;; < 90°, then go to step 14,
otherwise choose a;; = max a;.

1<i<N,

Step 10.

Construct oriented triangles A(zin, :1: 1) where :1:] .. are nodes of the
unit 2z, . Possible values of the parameter j can be of the following list:
Jjeql, 2}, if both the triangles exist. If only one triangle exists, then j =1
if the node w}nil is used, and j = 2 for the second node of the unit 2,

Choose from A(zpin, wﬁnil) the triangle which has larger minimal angle:

(Zminy Ty, ) 2> (Zmin, By, )

for all j from the list of values of this index: Then come to step 11.
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Step 11.
If

(Zmin, w%h ) < alZmin, ),

then come to step 14, otherwise test an intersection of lateral sides of
A(zmm,wﬁil) with all the units of CGB, except the nodes adjoining the

node zJ} o and the unit z,,;,. Besides, test a getting the nodes of CGB into

this triangle, except the node 3! and nodes l,;,, T2,

If there are no intersections and nodes inside the triangle, then redenote
the node :1:31 , by y« and go to step 12.

If there are intersections or if the triangle contains at least one node of
CGB, then choose a new value jo from the list of values of parameter j (if it
is not exhausted) and come to step 11, preliminary redenoting js by ;. If the
list of parameter j is exhausted, then consider the second intersecting unit
Zm;, (under the condition that the list of parameter m; is not exhausted,
i=1,...,Np), and if a3, > 90°, come to step 10, preliminarily redenoting i,
by i1 . Otherwise (either ay, < 90°, or the list of parameter m; is exhausted)
come to step 14.

Step 12.

Declare the triangle A(zin, Y«) as an element, remove 2,5, from CGB,
determine the number of connectivity of the domain, add two new units
(&L s Ysl, [Ysr 2], and come to step 1.

The number of connectivity is increased by one, if y. and z . belong to
one contour of CGB, and decreased by one, if these nodes belong to different

contours (see Appendix 7).

Step 13.
Declare the triangle A(zmin, 2;,,) 88 an element, remove Zyip, 2, from

CBN, add one unit [z*", £J*"] (see Appendix 5), and come to step 1.

Step 14.
Declare the triangle A(zmm,w*) as a new element, remove 2., from
CBN, add two new units [z} . ,x.], [T, 2,;,] (see Appendix 6), and come

min min
to step 1.

4 Conclusion

We illustrate of performance of the algorithms for different domains in fig-
ures below.
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Fig. 9. A grid for a ring.

In Fig. 9 a grid is given for h(x) = 0.18 for a ring with internal and
external radii 0.5 and 1, respectively (all the values here and below are
divided by dimensional unity). The equations of the contours of a ring were
given in parametric form:

z(t) = (cost, sint), x(t) =0.5(cost, —sint), 0<t<2n. (4.1)

The value of the parameter £ (see inequality (2.4)) was set as 0.001. The
grid has 178 elements and 115 nodes.

A ring with two circular cuts is shown in Fig. 10a . Two contours have
parametrization (4.1), the other two are defined as follows:

(z —0.6)2 + 4% = (0.05)2, x = (0.6+0.05cost, —0.05sint);
(4.2)
(x—04)2+(y+0.7)2%=(0.1)?2, = (04+0.1cost, —0.7—0.1sint),

27 <t<0.

The function of steps has two points of concentration in the centers of the
circumferences (4.3):

h(z,y) = ho + (k1 — ho)/A(z,y) + (h2 — ho)/B(z,y),
(5555) + ()]
(5550 + (=)

Alz,y) =1+

B(z,y) =1+
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Fig. 10. A grid for a ring with two circular cuts.

ho = 0.168, h; =0.02, ho = 0.04.

The grid has 864 elements and 483 nodes. The vicinity of the circumference
with radius 0.05 is shown in Fig. 10b in larger scale.
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a) 489 nodes. b) 954 nodes.
Fig. 11. Grids for a circular disk with an ellipsoidal cut.

Figures 11a and 11b demonstrate fragmentations of the same domain
under diverse parameters of the function of steps. The external boundary
of the domain is a circumference with radius 2, and its parametric equation

is
z(t) = 2(cost, sint), 0<t< 27
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The internal boundary is an ellipse with center in the point &, = (0.3; —0.5)
and its major semiaxis is inclined at the angle a = 30° to the axis Oz. The
principal axes are a = 0.9 and b = 0.2. Parametric equation of the ellipse
with the account of clockwise encircling of the boundary has the form

z(t) = 2. + acostcosa + bsintsin a,
y(t) = y. + acostsina — bsintcosa, 0<t < 27,

The center of the domain of concentration is the center of the ellipse. The
function of steps for both the triangulations was taken in the form

h(z,y) = ho + (h1 — ho) {1+ (%)m+ (2%)7”}_1 )

Z=(x—z)cosa+ (y—y.)sina, §=—(x—x.)sina+ (y—y.)cosa,

with hg = 0.3, hy = 0.03. In Fig. 11a we take m = 2, and in Fig. 11b we
set m = 4. The grid in Fig. 11a has 880 elements and 489 nodes, and that
in Fig. 11b has 1768 and 954, respectively.
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a)a pinion: normal size. b) one cog: large size.
Fig. 12. Grids for a pinion with 20 cogs.

In Fig. 12a the domain is a pinion with N = 20 cogs. A grid has 1219
elements and 702 nodes. The parameters of k—th cog are given in Fig. 13a,
where

a=360°/N, o =(k-18)a, o =0a+05a,l1<k<N.
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Then the points of bases and tops of the cogs are calculated as
zp =r(cosag;sinay), =, = R(cosaj;sinag), k=1,.,N; nt1 =21 .
Parametrization of the external boundary is fulfilled for each side of a cog:
c=xp+tlxy,—x1), T=x,+t(xp1—x,), 0<t<1, 1<Ek<N.

Parametrization of the internal boundary is demonstrated in Fig. 13b:
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a) the external boundary. b) the internal boundary.

Fig. 13. The boundary parametrization for a pinion.

z(t) =ri(cost ;—sint), r =025 g<t<2r -0,
z(t)=z;1+t(z;—2zi-1), 0<t<]1, i=23,4

Here

z1 =ri1(cosB; sinfB), =z2=r1(1.5; sinf),

z3 =r1(1.5; —sinf), =24 =r1(cosB; —sinj).

The centers of the concentration domains for the cogs are located in
the vertices x.*; the axes of the domains lies on the rays 8 = af and
in orthogonal directions. The value of step is the same and equals h; =
0.25|z;, — x|. The center of the concentration domain for internal cut is
located in the point (r1;0); the value of step is he = 0.05; the concentration
domain is stretched along the axis Oz.

So, the final form of the function of steps is

=1

s ()
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where

a=15(R-r), b=077R/N, ¢=13, d=0.7,
Fp = (z — z*)cosaj + (y — y;,") sin o,

U = —(z — 2" ) sinay, + (y — yi,") cos a,.

In order to demonstrate details of the grid on a cog, one of the cogs was
cut out, and the enlarged grid is shown in Fig. 12b.
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Fig. 14. A grid for the rectangle with wedge-shaped and triangle cuts.

In Fig. 14 a grid for a rectangle with wedge-shaped and triangle cuts is
shown. The grid has 1348 elements and 726 nodes.
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Fig. 15. The rectangle with wedge-shaped and triangle cuts.

In Fig. 15 the vertices x;, ¢ = 1,...,10, are shown which determine a
domain where

x1 = (0.5; 0.7), z2 = (1; 1), &3 =(0; 1), x4 =(0; 0),

s = (2 0), x6=1(2; 1), zr = (155 1), x5 = (0.3; 0.3),
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All the lines are straight except of the line from x7 into @;. T heir
parametrization is

Z(t) = Tu +H(Tus — T4), 0<EL

., is the beginning point of segment, x.. is the end point of segment. The
line from 7 into 2, is the parabola y = az?+bz+c, where a, b, ¢ are selected
according to the conditions that the parabola comes through the points x7
and z; and the value of derivative under z = z; is 0.4. Parametrization of
this line with account of counterclockwise encircling of the external contour
is
z(t)= (=t; at® = bt +c), —z7 <t < —21.

The grid obtained has two concentration domains; the center of the first
domain is the point . = :1,;(:1:8 + &g + x10), the center of the second one is
the point x;. Sizes of steps were chosen as

h1 =0.1 min(|:1:8 - :1:10|, |:1:9 - :1:10|, |:1:8 - :1:9|) >~ 0022,
h2 =0.04 |:1:1 — :1:7| ~ 0.023.

Each concentration domain was symmetric with respect to its center and
the axes of a local coordinate system obtained by parallel transfer of the
initial system into the center of concenteration

r1 = 1.6 max(|zs — Z10|, |T9 — Z10|, |Ts — T9|) ~ 0.22,
o = 0.2 |:1:1 - :1:7| ~0.12.

Major step of the grid is hg = 0.15. Then, with account of the form of the
concentration domains and their centers, the function of steps was taken as

h(z,y) = ho + (b1 — ho) {1+ (””;1”””)4+ (y;—y)Ll}_ +

+ (ha — ho) {1+ (%)2 + (%)2}_1.

In figures 16a, 16b enlarged vicinities of the vertex x; of wedge-shaped
cut and of the vertex x1g of triangle cut are shown.

From explanations it is clear that for the construction of a grid it is
necessary to input only the sufficient information: equations of contours
and function of steps.

There are two disadvantages of the proposed algorithms. First, it is im-
possible to determine beforehand the length of the arrays storing the infor-
mation about the grid. Second, numeration of nodes is not optimal. Since
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a) the wedge-shaped cut. b) the triangle cut.
Fig. 16. Zoom of cut areas, large size.

the length of arrays is not known beforehand, then in programs it is neces-
sary to check the border of the array. If the ordered length of some array is
less than it is necessary, then the programs halts and a message is displayed.
Since the programs of fragmentation are used within the frames of more ex-
tensive computations, then for determination of lengths of the arrays it is
recommended at first to run these programs for the given domain without
the complementary programs.

More essential disadvantage is the non-optimality of numeration of nodes,
what results in sparse stiffness matrix when using the finite element method.
Storage of the whole stiffness matrix considerably increases the required re-
sources of memory, therefore in the present case it is necessary either to use
specific methods of storage and solution of large sparsed systems [6-18], or
to avoid constructing global matrix and use some iterative methods. The
reason for use of iterative methods is that they presuppose only calculation
of products of matrix by vector, what can be done if we known the local
siffness matrices. The array which stores the numbers of elements adjoining
x, can be filled immediately in the process of triangulation of the domain.

Thus, the existence of practically effective algorithms for sparse matrices
and a possibility to solve a system of equations without formation of global
matrix by some iterative method allow to eliminate the second shortcoming.

Ag a conclusion let note that these algorithms extremely convenient for
use due to the possibility of elimination of the direct and indirect short-
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comings of the algorithms of fragmentation together with the simplicity of
handling, high degree of complexity of triangulated domains and a good
quality of grid.

5 Appendix 1

Let the points (z1, y1), (z2, ¥2), (z3, y3) be vertices of a triangle which are
written down in the order of counterclockwise encircling. The point (z«, y«)
lies outside the triangle if at least one of the following inequalities is valid:

v; >0, i=1,2,3,

where
v1 = (T — 21)(y2 — ¥1) — (T2 — 21) (Y« — 11),

v2 = (Tu — T2)(ys — Y2) — (&3 — T2) (Y — ¥2),
v3 = (T — 23)(y1 — ¥3) — (21 — 23) (Y« — ¥3)-

6 Appendix 2

Let in the triangle A(x,x1,z2) the angles at the vertices ; and xo are
acute. Only such situations arise in the algorithm of triangulation. The
distance [ from the point & to the segment [#;, 2] under the condition is

(wa Lo — wl)

l=|lx—t(xes—= =27 o/
| ( 2 1)|7 |w2_w1|2 b

where (, ) is the Euclidian scalar product; | - | is length of vector.

7 Appendix 3

Let two segments be determined by the points 1 = (z1, z}),zs = (2, )

and y1 = (yi,v3), y2 = (v?, y2). The test of intersection of two these

segments can be performed as follows: points of the first segment are
r==I1 +t1(:1:2—:1:1), t1 € [0,1],

and points of the second segment are

y=y1 +t2(y2 —y1), t2€l0,1].
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These segments do not intersect, if the system of two equations with respect
to ¢; and ¢o
1+ ti(xe —x1) =y1 +t2(y2 —y1)

does not have solution (the segments are parallel) or one of the solutions
does not belong to the interval [0, 1].
More effective algorithm of testing is as follows: if at least one of the
inequalities
v; >0 1=1,2,

is satisfied, then the segments do not intersect. Here
v = [(y1 — 21) (23 — 23) — (27 — 21)(y3 — )]
x[(yi — 21) (21 — 21) — (2] — 1) (¥3 — 23));
v2 = [(21 —91) (¥ —y2) — (47 — 91) (2 — 32)]
x[(21 - y1) (s —y2) — (47 —91)(@3 — p2)]-

8 Appendix 4

Oriented triangle A(2zynin, ) is understood as a triangle with ordered list
of vertices x} ;. = (z}, z}), 2, = (22, 22), =1, = (=¥, &), its direction
of encircling is determined counterclockwise and this encircling does not
contradict to the list of vertices. Existence criterion of oriented triangle is

the inequality
(a1 — 21)(af — 23) — (2F — 21)(23 —23) > 0.

9 Appendix 5

T1

wTInzn T3

w;nzn

Fig. 17. Connection of two adjacent units creates the new triangular element.

When constructing triangular element by connection of two adjacent
units on [-th contour of CGB, the value K(I) of the array K is decreased
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by one, and the transformation of the array M is performed as shown in
the figure 17. Le. from the list of units of I-th contour the units
min ,min min ., min
[, 25", [23"", 25""]
are removed, and a new unit [27**", £*"] is included. In other words, the
contour &1, ¥, P, ", xo, ..., x; is transformed into the contour
z1, M, B, T, ..., T

10 Appendix 6

When constructing triangle element (on the basis of unit z,;, belonging
to I-th contour of CGB) by construction of a new node ., the value K (I)
of the array K is increased by one, and transformation of the array M is
performed as shown in the figure 18.

Fig. 18. A new node . creates the new triangular element.

Le., from the list of units of I-th contour the unit [z ;. , 22 ] is removed,
and the units [z}, ., T.], [T+, T2,;,] are included. In other words, the contour

T1, Thiny T2, T2, ..., L1 is transformed into the contour z1, xh.. .,
3
T, T4, T2y T1.

11 Appendix 7

When constructing a triangular element (on the basis of the unit 2,4, be-
longing to I; -th contour of CGB) through the previously constructed node
Y« belonging to l;—th contour, the number of connectivity of the domain
is increased by one if [y = I3, and two new contours of CGB are introduced
due to fragmentation of the previous one; if I; # I3, then the connectivity is
decreased by one, to K(l1) the value K(I1)+ K (I2) + 1 is assigned to K (I;)
and K(ly) is set to be zero.

Transformation of the array M is performed as shown in the figures 19
and 20.
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Under condition l; = Iy

Fig. 19. The connectivity is increased.

the contour @1, Tk, T2y T2, > Y1, Yus Y2, -- ., &1 has divided into
2
two contours x, w}nm, Ys, Y2, ..., 1 and a:fm.n, T, ooy Y1, Ysy Thpsp-
Iflh #£1y
P jx/ -
e Y1 S, 70
/ /ﬂ\\ Al N
/ 7 N\ Ziw2 Vo
/ AN
/ r \ by
\ Y2 N [ |
\
LT YN )
’{\ / \ /oo
A 2
\ \\ﬁ LTmin Lmin
1 e
\\\\\\dg/, -

Fig. 20. The connectivity is decreased.

the contours y1, ¥+, Y2,

1 2
.., yhand z1, T, T, T2, ..., £1 have
combined into one contour
2 1
Y1y YUss Tipins L2 oy Ty Loy Yxy Y2, - Y1

The possible variants of closure of [; —th and lo—th contours are shown
with dotted lines, with exception of the case when the lines intersect.
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12 Appendix 8

When constructing two triangle elements by division of a quadrangle into
two triangles so that the minimal angle of the triangles would be maximal,
two situations, as in App. 7, are possible.

1. The units 2y, and z;;,,,, belong to [;-th contour of CGB, and the node
x,, which completes these units to a quadrangle belongs to ls-th contour
(I # l3). In this case the number of connectivity is decreased by one,

because a junction of two contours into one takes place. The contours

Fig. 21. The number of connectivity is decreased by 1.

Y1, Tm, Y2, --., Y1 and 1, ", ", =™, x9, ..., x1 have formed
the contour

min min
T, wl s Lmy Y25 -5 Y1, T,y w3 y L2y .oy L.

2. The units z,i, and 2, ,,, and the node x,, belong to the same contour

of CGB. In this case the number of connectivity can increase by one or
remain the same.

Increase of connectivity by one takes place if the node ., does not form
an unit of CGB with one of the nodes 7" or £J**". Transformation of the
array M is performed according to the figure 21 given above, but in this
case the contour

min min min
wlawl 7w2 7w3 y L2y ooy Y1, Tmy Y2, .., L1
is divided into two contours xi, ", m, Y2, ..., T1 and z,, P,
L2y, .y Y1y, Ty

The number of connectivity remains the same if the node ., forms an
unit with one of the nodes ™" or §*" (in the figure 22 it is §*"). The
contour

min min min
L1, L1 Loy Tz Tmy Y15 -0y L1
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turns into a new contour z;, """, T, Y1, ..., T1.

Y1

K

wg’L’LTL

min

e
1 25

Fig. 22. The number of connectivity either increase by 1 or remain the same.

consideration (when y, forms an unit with x

Note that in the previous Appendix similar case was not taken into

1 2 _
min OF o under iy = lo),

since it is eliminated by the algorithm.
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A batch of applied programs for numerical solution
of convection-diffusion boundary-value problem

Kireev 1.V., Pyataev S.F., Shaidurov V.V.

Introduction

The work consists in development of an economical algorithm based on the
classic variant of finite element method and intended for numerical solution
of convection-diffusion boundary-value problem

—eNAu+b; g + b2 =f in £, (1)
u=g on I. (2)

Here two-dimensional domain (2 is limited by piecewise smooth boundary
I; € is a small positive number; by, b, f, g are smooth enough functions.

A good adaptation to the conditions of this problem is required from
the algorithm, which would ensure high-accurate solution of boundary-value
problem under linear approximation of the function u(z,y) on each finite
element. This means that an automatic division of the initial domain into
finite elements oriented along the characteristics should be anticipated in
the algorithm, and the requirement of economy indispensably leads to the
use of the technology of embedded grids.

The idea of this algorithm is as follows: for construction of a new grid it
is sufficient to analyze the behavior of piecewise linear and Hermitian cubic
interpolations of the approximate solution obtained within the framework
of standard finite element approach, and on the basis of this analysis to
construct a partition of edges of finite elements, which automatically leads to
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construction of a new embedded grid accounting for more subtle peculiarities
of the desired solution.

For realization of this idea, it is necessary to have an algorithm of de-
termination of partial derivatives of the function u(z,y) from its given node
values. From a number of algorithms of determination of partial deriva-
tives we have chosen a method described below, which, in our opinion, most
organically matches this class of boundary-value problems. Unfortunately,
theoretical substantiation of this statement is very problematic, but the
approach being proposed has made a good showing in a great number of
numerical experiments.

The testing of algorithms and programs has been performed for a simpler
boundary- value problem; it was assumed that the domain 2 = [0,1] x [0, 1]
is unit square, by = 1, by = 0, and f = c is constant, i.e., the following
equation was considered

o .
—eAu + 57 ¢ o (0,1) x (0,1).

It is easy to verify that this equation admits solutions of the form
u(z,y) = (cle)‘1 (@=1) 4 626)‘2w) sinnmy + ay + b + cz,

where a, b, ¢1, ¢o are certain constants, and
1 1
A= £(1+\/1+(2n6)2) >0, A= 2_5(1_ 1+ (2ne)?) <0,

at that Ay 2 e~ + n%ec and Ay = —n’c under £ < 1.
If we are interested in solutions which do not depend on y, then, as it is
easy to show, the solution of the equation is of the form

z
u(z) = ¢ exp — +co +cz.

Just in this class of functions the debugging and testing of the algorithm of
edge division have been carried out.

1 An algorithm of determination of partial
derivatives

Let approximate the partial derivatives of a function u(x,y) determined by
numerical values uy in nodes My(zs,ys) : w(zs,ys) = uy in the vicinity of
the point My as a linear combination

Ou(z,y)
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Ou(z,y)

Oy
where ud, u$, ud,, ud,, ug,
for each node of the grid.

= Ug + (z — mo)u, 0 + (¥ — yo)us Uy

are certain unknown constants to be determined

/{Vl \\\ Mg 1

MKMJ /MO

\ M1 MI
Fig. 1: Fig. 2:
The nondegenerate case of dy,. The degenerate case of das,.

Then the central difference uy — ug approximates the derivative of the
function

uy(t) = u(xo + t(z — 2o), Yo + t(y — vo)), t € [0,1]

in the point Ny (¢t = 0.5) with error O(h%), where

hy =V (25 — %0)% + (ys — y0)?,

uy(0) = up, and uy(1) = uy. Therefore for smooth enough function u(x,y)
the following relations should be valid:

dJ(ug,ug,ugw,ugy,ugy)/h3 =0(1)
where

dJ(u u ugwaugyaugy) = (U’J - UO)
— (zg — zo)[ud + 0.5(zs — zo)ug, + 0.5(ys — yo)ud,]
— (yy— yo)[ug +05(zy — xo)ugy +0.5(ys — yo)ugy]-
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Grouping together neighbouring to Mg nodes My, Ms, ..., My, ..., Mg,
(see Fig. 1) construct the functional

da, (ug,ug ugw,uwy,uyy Z {ds( u u um,ugy,uyy)}2/h6

It is easy to verify that the components u?, ug of solution of the least square

problem
o ,0 .0 0 0
dug (u:w Ugyr Ugs Ugy» uyy)
u?z 7u8 7u9:m 7u9:y 7u2y

inf
give an approximation to partial derivatives

Ou(xo,y0) Ou(xo,Yo)
8z Oy

of a smooth enough function u(z,y) to within max{h?}. At that, total
number of nodes M necessary for calculation of partial derivatives in the
point My must be not less than 5 (K > 5).

However, arbitrary sequences of points close to My cannot be used for
such procedure. So, for instance, a sequence of points similar to that shown
in Fig. 2 gives a functional du, degenerate with respect to u3, u3, ud,, u3,,
ugy, whose minimization problem has infinite number of solutions. There-
fore, if in the process of calculation it appears that quadratic functional
du, generates a linear system of algebraic equations with singular matrix,
then additional nodes M; immediately neighbouring the node M, are con-
sequently taken into consideration, till the functional das, will become non-
degenerate. The highest accuracy of the derivatives calculated in such a way
is reached in internal points of the domain.

2 Construction of a sequence of embedded grids

The described above algorithm of determination of partial derivatives in
vertices of finite elements from calculated node values of numerical solution
u(z,y) has been used for construction of a sequence of embedded grids.

A new grid was constructed on the basis of analysis of behaviour on each
edge of the initial grid of both linear and Hermitian cubic interpolations of
function u(z,y) constructed from node values of function v and values of
partial derivatives u,, uy calculated in the nodes of the grid.

An edge was not divided, if on the edge the module of maximal difference
of values between linear and cubic splines did not exceed g,. Otherwise, a
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new point was chosen inside the edge, proceeding from the following rea-
sonings.

Denote by M the desired point of division of the edge My M. Then, as
it is shown in Fig. 3, on the edge MoM ; a piecewise linear approximation of
the function u(x,y) appears; minimizing in some norm the residual between
the latter and cubic approximations, we obtain an algorithm of construction
of the point M of the edge My M.

Mo M"] MJ
Fig. 3:

A piecewise linear approximation u(zx,y) on the edge Mo M.

Let give more details. Denote by u(t) the cubic spline for the edge
[Mo, My]; t € [0,1] and the values

du du

are given. Then

U(t) = ago + a01t + 0,02t2 + a03t3,
U(t) =ayo + 0,11(1 — t) + 0,12(1 — t)2 —+ 0,13(1 — t)3,

where

. — .
Goo = Uo; Aol = Ug;

age = 3(u1 — ug) — 2ugy — uj;

1 1
ag3 = —2(u1 — uo) + ug + u3;
1
10 = U1;  a11 = —Uyp;
1 1
a12 = —3(u1 — ug) + uy + 2uy;

a3 = 2(u1 — ug) — uy — .

Let vo(t) and v; (#) be linear approximations of the function u(t) on the
intervals [Mo, M) and [M;, M;], where t € [0,7] and ¢ € [7,1], respectively;
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0 < 7 < 1. Then the functional
™ 1
By, = / (u(t) — vo(6)) *dt + / (u(t) — v (8)) *dt
0 T
gives the square of norm of residual between u(t) and its piecewise linear

approximation wvg(t), v1(t) in the space Ls[0,1]. Direct computations give
the following expression for the functional:

¢L2 = (70,%2 + 210,020,037' + 160%37’2)7'5
+ (7a?y + 21a12a13(1 — 7) 4+ 16a2,(1 — 7)%)(1 = 7)°

where the numbers a;; are defined above. Minimizing this functional with
respect to 7 € (0, 1), we determine the coordinates of the point M’ which
is new node for the new grid; for this purpose it is necessary to solve an
equation of the fifth power with respect to .

Mo M"] MJ

Fig. 4: The distance between graphs
of the cubic polynomial and its linear interpolation.

For numerical solution of algebraic equation the Newton method was
used, and as an initial approximation the point of the edge [My, M ;] was
taken, in which the distance between the graphs of the cubic polynomial
and its linear interpolation is maximal, as shown in Fig. 4. As a rule, this
approximation is rather good, and for correction of it with a reasonable ac-
curacy it is sufficient to make only several iterations of the Newton method.

Besides @1, other functionals have been considered. So, for instance,
a number of functionals have been considered which approximate residual
functional from CT0,1]. However, test computations have shown that the
results differ insignificantly, but the time of computation when constructing
the embedded grid increases greatly. Apparently, this is connected with the
fact that the node values u; themselves are results of computations and
have the accuracy of the order m}x{hQJ} where h;y is the length of J—th

edge.
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3 Program realization of the algorithm

A complex of programs in language C for numerical solution of convection-
diffusion boundary-value problem (1)—(2) has been designed on the basis of
the algorithm described above.

For numerical solution of convection-diffusion boundary-value problem a
scheme with the second order of accuracy has been used, which generates a
system of equations with M-matrix, satisfying discrete maximum principle.

The solution of the obtained system of linear algebraic equations has
been carried out by iterative Gauss-Seidel procedure under special ordering
of equations and unknowns. The number of iterations on each embedded
grid was fixed and did not exceed 15.

In Fig. 5 — 20 some results of operation of the procedure of construction
of embedded grid for solution of boundary-value problem under z € [0,1],
y € [0,1] and u(z,0) = u(z,1) = u(0,y) = u(1,y) = 0, e = 1072 are shown.
The initial triangulation was generated by uniform division of the sides of
the square into 8 equal intervals with subsequent diagonal division of each
elementary square into triangles. An edge was not divided, if the module of
the maximal on the edge difference between linear and cubic splines did not
exceed £, = 1073; for solution of finite-dimensional problem on each of the
grids the Seidel method with fixed number of iterations (=50) was used.

Fig. 5 — 8 show the character of arising grids under ¢, = £. In figures
9 — 20 the information on the sequence of grids arising under £, = 50¢ is
reflected;

Fig. 9 — 12 show general dynamics of the sequence of grids;

Fig. 13 — 14 show the changes of grid at two last steps in the square

[0.0, 0.125] x [0.0, 0.125], eightfold enlarged;

Fig. 15 —16 show the changes of grid at two last steps in the square

[0.5, 0.625] x [0.0, 0.125], eightfold enlarged;

Fig. 17 — 18 show the changes of grid at two last steps in the square

[0.875, 1.0] x [0.0, 0.125], eightfold enlarged;

Fig. 19 — 20 show the changes of grid at two last steps in the square

[0.875, 1.0] x [0.375, 0.5], eightfold enlarged.

In the course of joint researches in Augsburg Technical University series
of test computations on different computers and under several operation
systems has been carried out. Main objective of these computations was
to estimate real time necessary for solving the considered boundary-value
problem.

In our opinion, some of these results are rather interesting; they are rep-
resented below in the form of a table.
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| HOSTNAME || TYPE | MHz| MB [SYSTEM | 1 | 2 [ 3 |
MALAGA R4000 150 [ 96 IRIX [58.9]3.75[187.0
SEVILLA R8000 75 | 512 | IRIX64 [42.8/3.88|171.0
MARBELLA || PENTIUM PRO | 200 [ 128 | LINUX [20.2[2.40[ 56.7
ALCALA PENTIUM II 266 | 128 | LINUX [13.8[1.68] 71.7
ZARAGOZA || ALPHA 500 | 128 | D.UNIX | 9.7[1.10] 36.6
LACORUNA || ALPHA 533 | 256 | LINUX [11.5[1.30] 47.6
BURGOS ALPHA 533 | 256 | LINUX [11.7]1.28] 47.9

Here the first five columns contain general information about the comput-
ers which were used in the computational experiment; this information has
been kindly granted to us by professor U. Riide.

C-version of the program contains four main parts:

(I) procedures of construction of initial triangulation for (2;

(IT) procedures of formation of the global system of linear algebraic equa-
tions;

(ITT) procedures realizing the iterative Gauss-Seidel process with special or-
dering of equations and unknowns;

(IV) procedures which construct embedded grid by above method using the
solution from (III).

The tests have shown that at the beginning of the computational process
the time of execution of each of I-IV parts of the C-program is proportional
t0 Npoint Which is the number of points of the initial grid. Therefore, the
time of execution of each part of the program in the course of the test
computations was divided by Npoint = 10% after the statistical processing
of several numerical experiments. Here “time of execution” means the user
time obtained by the command “time” of UNIX operation system.

The column 1 contains the time of computations for the parts I, IT on
a regular grid. The column 2 represents the time spent on realization of
one full iteration in the Gauss-Seidel method when solving the system of
linear algebraic equations. And, finally, the column 3 contains total time of
computation of the stages IV and II of C-program.

The computations have been performed for the case when

N7=100,1] x[0,1],e=0.001, by =1, b =0, f=1, g=0.

One can see from this table that the efficiency of a computational com-
plex strongly depends on both the parameters of computer and the type of
operation system.
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Fig. 5: Changes of grid at step 1; ¢ = 1073,
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Fig. 6: Changes of grid at step 2; ¢ = 1073,
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Fig. 7: Changes of grid at step 3; ¢ = 1073,
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Fig. 9: Changes of grid at step 1; ¢ = 0.05.
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Fig. 10: Changes of grid at step 2; € = 0.05.
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Fig. 11: Changes of grid at step 3; ¢ = 0.05.
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Fig. 12: Changes of grid at step 4; ¢ = 0.05.
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Fig. 13: Step 3; ¢ = 0.05 (vicinity of the origin).
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Fig. 14: Step 4; ¢ = 0.05 (vicinity of the origin).
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Fig. 15: Step 3; ¢ = 0.05 (at the bottom).
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Fig. 16: Step 4; £ = 0.05 (at the bottom).
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Fig. 17: Step 3; ¢ = 0.05 (the right-hand bottom corner).
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Fig. 18: Step 4; ¢ = 0.05 (the right-hand bottom corner).

0.9

0.925

0.950

0.975

1.0

0.125

0.1125 |

0.1

0.0875 &

0.075 T

0.0625 |

0.05

0.0375

0.025 |

0.0125 |

0.0

0.875

0.9

0.925

0.950

0.975

1.0

175



176 Kireev 1.V., Pyataev S.F., Shaidurov V.V.

Fig. 19: Step 3; € = 0.05 (the right-hand boundary).
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Fig. 20: Step 4; ¢ = 0.05 (the right-hand boundary).
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A difference scheme for convection-diffusion problem
on the oriented grid

Kalpush T.V., Shaidurov V.V.

Introduction

The work is devoted to a difference method for solving two-dimensional
problem for convection-dominated convection-diffusion equation. This prob-
lem is related to the class of singular disturbed problems and it often has
a solution of a boundary layer type with strong increase of derivatives in a
vicinity of certain lines and points [1, 2, 3].

An application of the finite element method or difference methods for
such problems has some specific features in comparison with the boundary
value problem when convection and diffusion items have the same order.
First, in zone of boundary layer it is necessary to take into consideration
the boundary layer type of the solution [2] or to condense grid to com-
pensate strong increase of derivatives [3]. Second, in zone of smoothness,
when the influence of higher derivatives is low, we should take into account
that the equation becomes the convection one (called here as reduced equa-
tion), while the area of solution dependence in points of this zone tends to
a piece of reduced equation characterictic. Third, the standard difference
schemes and the schemes of the finite element method with central differ-
ences lose a stability, while the schemes with directional differences possess
computational diffusion which is essentially greater than the physical one
and it disturbs even qualitative description of solution, not to mention the
quantitative similarity. In contrast to the physical diffusion, the compu-
tational one differs both in various space points and in various directions
in the same point. The role of the ”longitudinal” computational diffusion,
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i.e., the diffusion along the convective flow, is already evidently seen in one-
dimensional case, where it studied well and give the same consequences as in
two-dimensional problems. In section 3, we define more precisely the influ-
ence of the ”transversal” computational diffusion, which ”washes-out” the
difference solution in nontangent directions to convective flow. In certain
difference schemes it essentially exceeds the physical diffusion, therefore to
check it, we introduce the value, which is called the criterion of grid orien-
tation along the convective flow.

In section 5, we state the algorithm of successive strengthening orien-
tation for an arbitrary grid without new inner nodes addition and without
node coordinates modification. In section 6, this algorithm is illustrated
with an example of grids with uniform arrangement of nodes, but more and
more oriented along the flow at the expence of changing stencil topology of
difference scheme.

In section 4, we suggest the method of construction of inverse-monotone
second-order finite-difference scheme. The combination of these properties
is usually reached by special matching of the flow direction and the ar-
rangement of grid nodes. Such, for example, is Crank-Nikolson scheme for
convective term approximation with the arrangement of two nodes along the
flow in the characterictic method. The use of the strengthening orientation
algorithm provides this opportunity for arbitrary arrangement of the grid
nodes.

1 The difference problem statement

Let us introduce Euclidean distance |z — 2'| = ((z — 2')? + (y — y')?)'/?
between two points z = (z,y) and 2’ = (z',y') in R2. Let 2 = {2 = (=,y) :
0 <z <1,0<y <1} be opened unit square with boundary I".

We shall use notation C*(D) in an arbitrary subdomain D C 2 for the
class of functions having continuous k-th partial derivatives on closure D
with the norm

llully,p = max

oortaz,y,
max
a1t+aee2<k D

Ox Oyo2

where a1, s are non-negative integers. Assume that C°(D) = C(D).
Consider the problem
o .
—eAu+b18— +b2 f m .Q, (11)
u=g on I, (1.2)
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where € < 1 is a small positive parameter; functions b;,bs € C(f2) and the
right-hand sides f € C(2),g € C(I") are known. Thus, we have a solvable
boundary value problem for the elliptic second-order equation [4].

In a subdomain, where the second derivatives are limited, their influence
is low due to the small parameter . Therefore the equality (1.1) comes to the
equation of first order, which characterictic system of ordinary differential
equations corresponds

de.. _ dy _ du
bi(z,y)  bao(z,y)  flz,y) (1.3)

Its solution is the set of characteristic curves or simply the characteristic.
In each points z = (z,y) € 2 the vector ¢(z) = (b1(2),b2(2)) touches the
characteristic passing through this point. Therefore, we call it as character-
istic vector, while the opposite vector as anticharacteristic one. We assume
that a direction is a corresponding vector of unit length. In particular, the
direction (b + b3)~1/2(by1,bs) with b? + b2 # 0 in point (z,y) is called as
characteristic direction, while any other direction, that does not coincide
with it or with the opposite one is called as direction that ”transversal” to
characteristic one.

2 The difference approximation of convective item
on an arbitrary trianqular stencil

Consider the triangle with vertices

2t = ("I"tayt)a s = (:L'says)a Zp = (%,yr),

Fig. 1: The triangular stencil and the new local coordinates.

at a distance not greater that h from each other and not lying on one
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straight line. It is suppose that b?(z;) + b3(2:) # 0 and anticharacteristic
vector — t(z;) lies in angle Zz,2:2, (see Fig. 1).

Let construct the following approximation for this tree-point stencil with
the help of indefinite coefficient method [12] :

ou ou

bl%"‘an_y

~ ou(z) + Bu(zs) + yu(zr) (2.1)
in node z;. Suppose that u belongs to C3(B(z, h)) in the closed ball B(z;, h) =
{z:]|z — 2| < h}.

To simplify the problem, we introduce new local Cartesian coordinates
(z',y') with the origin in 2 and with axis Oz’ along —#(z;) (see Fig. 1).

The vector b = (by,bs) in new coordinates comes to b = (b},b) with
coordinates b} = (b?+b3)'/2, b, = 0. Points z, = (xs,ys) 2r = (TryYr), 2t =
(z,y:) comes to z, = (z},y%), z. = (zl,y.), 2 = (0,0), and function u(z)

does in i(2') respectively. The item in the rlght hand side (2 1) comes to
(b2 + b2)'/2 8a1/02'. Let take Taylor series with respect to 2, = (0,0) for
function #(2'), summate them and 4(2;) with indefinite weights «, 8, v

au(z) + Bu(zs) + yulzr) = (@ + B + 7)i(z)

+ B2+ 12) G Gl) + (B + W) 5 ) 22)
S TRE + & )+ ¢ SR+ o)
where
¢4 = 15%22 + %w’ﬂ
Cy = 6 TYs T VT (2.3)
c3 = —By + lvyT -
Here, we can distinctly see the computational diffusion ¢} 8%4/0z' 2 along
the characteristic line, diffusion c} 8%a/dy’' % in perpendicular direction, and
diffusion ¢}, 6%/0x'0y’ in some intermediate directions.

Since h is small enough, in order to get at least the first order of approx-
imation, we need the following equalities:

a+B8+v=0,
Bz, + vz, = b, (2.4)
By, + vy, = 0.
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The matrix’s determinant of this system equals double square of triangle
Azizg2-, which is denoted as S. Since the triangle does not degenerate into
a line or a point, the determinant is not equal to zero and the system has
the unique solution

= (b2(zr — x5) — b (yr — ¥s))/S,
B = (bi(yr —yt) — ba(zr — 7))/ S, (2.5)
= (b2(ws — 21) — b1(ys —y1))/S,
) —

where S = (yr — y2)(@s — 2¢) — (Tr — ¢) (Ys — y¢) = Y12, — 1Y
Using 8 and v in (2.3), we obtain:

I ey
yrah — oy
1,1
cl — ysyr 1:/ _1:/ , 2.6
= il — oy O ) 20
YsY,
cs 2 —(yy — Uy)-

= ! ! a4l

YrZs — Tpls
Hence, to decrease the coefficients ¢} and cj, we need to minimize the fol-
lowing value

Kr(z:) = yy,/S (2.7)

which is called the index of triangle’s orientation Aziz,z, in point z;.

It should be noted that if y, or y. is zero, then the approximating
transversal diffusion equals zero. That is the case, for example, in the
method of characteristics.

3 Construction of inverse-monotone second-order
finite-difference scheme

To construct the difference scheme, we first introduce the discrete set (25, of
nodes in 2 and the discrete set I}, of nodes on I'. Assume that 2, = 2,UI},.
For each node z € 2;, we form the subset N, of some nearer nodes of (2.
Denote by h, the local radius of this subset:

h, = max |z—z|~
Z’EN

Let us take an arbitrary inner node Z € (25, and introduce local orthog-
onal coordinates &, 7 with origin in z , with axis O along ¢(Z) and axis Oy
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¢ = (1,m)

€0 = (0,0) £/ ¢

G2 = (&2,7m2)

Fig. 2: The local coordinates (£,7n) and the arrangement of nodes (o, {1, (2.

to the left of £(Z) (see Fig.2). In this coordinates equation (2.1) comes to
another one:

<. 0 T
in the h,-vicinity of node z. Here for any function w(z,y) we put
w(&,n) = w(@(&,n),y(€ ) (3.2)

and introduce new functions

by (Z_)Bl (67 77) + B2 (z_)b2 (67 77)

d(f, 77) = |t(5)| ’
_ b@bi(&n) - bi(@)ba(En).
C(fa 77) - |t(§)| !

operator A = 82/9€% 4+ 8% /9n* has the same form but in new coordinates.
Further we study two situations separately: ¢ < c;2h% and c;*h2 < e
with some constants ¢g, ¢; independent of €, hz. Let start with the first one.
3.1. Large hz. Tree-point stencil.
First situation means that

Suppose that u belongs to C3(B(z, hz)) in the closed ball B(z,hz) = {z :
|z — 2| < hz} and has bounded norm

lllls,B(o.nz) = llulls,B(zrs) < €2 (3-4)

with constant ¢; independent of hz and .
Our goal is to derive an equality
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of

of (G0)+ Ba 50 (G)+O(RD). (35)

o€
We consider special arrangement of nodes. It is supposed that ¢ = (0,0);
node (; lies in first quadrant: & > 0, 71 > 0; and node (; lies in fourth one:
& > 0, 2 < 0. Let us take Taylor series in nodes (1,(2 with respect to (o
for function @, f :

aoti(Co) +0n(C1) +02ii(Ga) = f(Go)+ P15

(G) = 60 + 6 g () + 15 (G) + - 5 @) "
+ i g @0) + LS (c0) + O
and
f(Go) = =d(%) f(<o)+0(h2) (3.7)
% (6 = 26 26 T+ 22 6 2oy + 0k, 39)
3{ 0 f 0 af 0 0 662 0 f 0 0 .

% (6 = 26 2 a6 o 0+ 2 (6 P+ 0k 39)

Now use these decomp031tions in both sides of (35) In order to get at least
first order of approximation, we need to cancel terms i, d4/9¢, 04/ 0n:

ap+ a1 + as =0, (3.10)
a1é1 + asbe = —d(Go) — 51 f(Co) /32 (Co) (3.11)
a1t + asne = B f(Co) 52 (Co) (3.12)

Two more equalities follow from elimination of 82u /02, 8%/ 0¢0n:

S8 + z8) = ~d(Go)Bu, (313)

arim + azxéene = —d((o)Be- (3.14)

In principle, we get 5 linear equations for 5 unknowns. Later we shall see
that |51],|B2| are small enough and

{ = (B1,B2) € AGoGalar- (3.15)
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It gives us a possibility to change the right-hand side in (3.11) and —d((o)
n (3.13), (3.14) by —d(¢) without violation of the second order of approxi-
mation:

o &1+ asde = _d(Z)a (3.16)
(@& + ) = ()8, (317
o + aplene = —d(z)ﬂ% (3.18)

Since a({p) = 0, the same modification may be done in (3.12) without
violation of the second order of approximation:

a1 + aane = o({). (3.19)

Equalities (3.10), (3.16), (3.19) give the system with respect to a; with
unique solution

ao=(( )(g) (&1 — &)a(0))/(2s0),
= (m2d(0) + &0(0))/(2s21), (3.20)
a2 =( d(Q) - &a(())/(2821), (3.21)

where so1 = (€2 — €17m2)/2 is the area of triangle A{p(2¢;. Due to (3.15)
and equality o((p) = 0, the inequalities

|o({)] < chz < d(0) (3.22)

hold. Therefore when 7, is comparable with &, i.e., ;1 ~ &1, we get

az <0; (3.23)
analogously from comparability of |ns| with & it follows that

oy <0. (3.24)
Both previous inequalities involve

ap < 0. (3.25)
It would give M-property of the difference operator in the left-hand side of

(4.5).
Now let us use (3.20) in (3.17) and (3.18):

b= 1o (& — ) + 6&a(6e — )0©/dD), (320
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B2 = E((& — &)mme + & ba(n2 —m)o()/d(0)). (3.27)

From arrangement of ¢; it follows that
0< 61 < g max{tr, &) < he/2 (3.28)
N2 < B2 <M, |Be| < hs. (3.29)

So, you see that 81, 32 are small enough and was found by unique way
with (3.26), (3.27). After that one can find «; from (3.20) with the help of
equality

d(C) = d(51,/32)-

Finally, in order to get second order of approximation we need coefficient
Ass before 8%4/0n? in (3.6) to be small enough:

2 2
2

| As2| = (1177?1 Toay < cshl. (3.30)
Since Asgq is positive, we need only
Asa = —mima(m = m2)d(©)/ (4521) < cah. (3.31)

Let € is cross-point of edge (1, (2 with axis O¢, then

S21 = %(771 —1m2)E. (3.32)

Combining it with (3.31) we get

M2 48 < eshl. (3.33)

In principle, € ~ hs. Therefore we need
—mne ~ cihl. (3.34)

From the first sight it seems to be unusual since the left-hand side has
only second order of smallness. But in the next section we shall describe
an algorithm of grid reorientation which gives this inequality and (3.31) by
regular way. Therefore we consider inequality (3.31) to be valid.

3.2. Small hz. Five-point stencil.

Second situation means that

cihs < Ve (3.35)
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Let us again try to get (4.5). But this time we need to keep in consideration
more terms because € is not O(hZ) now. Therefore instead of (4.7) we have

0% 0%

flo) = (co) (@) - e (o) - 62(40) (3.36)

23

It gives (3.10), (3.11), (3.12), (3.14) to be the same, and (3.13) comes to the
following;:

S8 + axd) = ~d(Go)6 . (3.37)

Let us repeat considerations (3.15) — (3.27). We obtain the same a; from
(3.20) and B> from (3.27). But we get another §; and Ags :

Br = g (m& —mag) — </d(G), (338)
Agy = —mma(m —n2)d(()/(8sm) —e. (3.39)
From arrangement of ¢; it follows that
~e/d(G) < B < 5 max(ér, &) - ¢/d(G). (3.40)
Due to (3.35)
|81] < hz/d(Co)- (3.41)

So, B1,82 are of order O(hz) and are found by unique way from (3.27),
(3.38). After that, one can find o; from (3.20) with the help of equality
d(¢) = d(B1, B2). As a result, we obtain

of
(@)

- (3.42)
7 () + A 5 (G) + 00,

aoti(Go) + ar@i(Cr) + aeii(Ge) = f(Co) + B 55
+528

In principle, we can make first item in the right-hand side of (3.39) to be
small enough due to algorithm of reorientation. For example, let us demand
that _
—mnz( — n2)d(¢)/ (8s21) < e. (3.43)
It implies
—& S A22 S 0. (344)

In order to cancel item A220%4/07n? in the right-hand side of (3.42), let us
introduce one more triangle with vertices (o, (3, (s (see for Fig. 3); node (5



A difference scheme for convection-diffusion problem 187

lies in third quadrant: (3 < 0,73 < 0; node (4 lies in second one: (4 <
0, 74 > 0. Consideration like (3.36) — (3.42) gives one more equality

of

abii(Co) + ay@i(Cr) + ii(Gs) = F(Go) + B =5 9€ (¢o)
of . (3.45)
+ 85 a—n(Co) + Asy 6—772(40) +O(h)
with coefficients
—(m —m3)d(C")/ (4343), (3.46)
= —n3d({')/ (4543), (3.47)
ofy =mad((")/ (4543), (3.48)
Bl = —(mé&3 — 13€7) — ed(Co)/(8s43), (3-49)
B5 = —mns(és — f:i)/(4843)a (3.50)
Aby = nanz(na — n3)d(¢")/(8s43) — &, (3.51)
n
Ga= (547774) ¢ =(&1,m)
¢
(s = (237773) : G2 = (§2,m2)

Fig. 3: The local coordinates (£,1) and the arrangement of nodes (o, ..., (4.

where sq3 = (13€4 — 14&3)/2 is the area of triangle Angnans. This time,
coefficient A%, consists of two negative items and

A, < —¢ (3.52)

due to arrangement of nodes (4, (3. Let us combine (3.42) and (3.45) with
weights 61,02 in order to cancel term 8%a/0n({o):

61495 + (5214’22 =0. (353)

For scaling we take also
01+ =1. (3.54)
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This system gives unique solution

01 = Ay /(A — A22) >0,

(52 = —Agg/(AQQ - A22) S 0, (355)
when
Ay # Ass. (3.56)
The last is guaranteed when, for example,
msma 0 or mme #£0. (3.57)

Due to (3.52), (3.54) we get

//a_.f
2 an

1 af

1 9E (o) +O(R3) (3.58)

4
> ala(G) = F(G) + B 75 (Co) + B
=0

where

ag = 51(10 —+ (52(16 > 0, alll = (Slal < 07
al2, = (51(12 S 0, ag = 52al3 S 07 aZ = (52(121 S 0’ (359)
Bl =681 + 628, BY =618 + 6255,

The signs of &} provide the inverse monotonicity of difference operator in
the left-hand side of (3.58).

4 The algorithm for the orientation strengthening of
the difference grid

Let us consider an arbitrary opened limited, and connected polygon 2 € R2.
We construct its triangulation 7, i.e., we cut this polygon into the finite
number of opened triangles T;, ¢ = 1,...,m, so that their closure T; cover
o o

This triangulation should be consistent, i.e., any two different closed
triangles T; and T from J, i # j, either have no common points, or only
one common vertex, or have the whole common side.

Let us denote by {2}, a set of all vertices of triangulation triangles, which
are called by nodes. Suppose that

thﬁhﬁﬁ, thﬁhﬁf. (42)
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Our goal is to describe the algorithm of triangles reconstruction in order
to decrease the computational diffusion across characteristic lines of differ-
ence analogue to necessary limits. In section 3, we introduce a special local
value to control it.

There are many ways of grid construction of different complexity. The
grid are condensing in the required subdomains or oriented with some
method. But all of them are connected either with the new nodes addi-
tion, or with the inner nodes coordinates modification.

We propose the algorithm that does not change the coordinates of in-
ner nodes, but it makes better the desired quality of triangulation due to
reconnection of the nodes among themselves.

Now, we consider the initial consistent triangulation J'. One of the
algorithm cycles consists of step-by-step sorting out of inner apexes z; €
J' NN, i=1,..,n, by means of possible triangles reconstruction. Let us
describe one step of this algorithm.

Let ¢ be inner node z; = (z;,¥;) of the consistent triangulation J’ with
anticharacteristic vector —t(z;), which we reconstruct to perform the in-
equality

| max Kr(z)<é (4.3)
with some constant 4.

r S ZH

Fig. 4: The anticharacteristic direction crossing the boundary.

1. If this vector is directed along one of the triangle sides, with the origin
in this vertex, then local criterion (K, (z;) = 0) is considered to be valid and
we complete the step without changing the triangulation, i.e., the result J"
of this step coincides with J’.

2. If this coincidence (which is unlikely in real problems) does not take
place, then there is triangle T}, € J' with vertex z;, for which vector —t(z;)
is enclosed between its sides. Let construct a ray in this direction to cross a
side of this triangle, which is opposite to vertex z;.



190 Kalpush T.V., Shaidurov V.V.

Futher, there are two variants.

2.1) The triangle side crossed lies on the boundary I' (Fig. 4). In this
case we add a new node zy to I, , which is the intersection point of the
constructed ray and boundary I'. In this case we obtain the ideal situation,
Kr(z;) =0.

2.2) The triangle side cross is the inner one (Fig. 5). Since triangulation
is consistent, there exists one more triangle with the same side.

Zi

Fig. 5: The anticharacteristic direction crossing the inner side.

Further, there are two variant as well.

2.2.1) The obtained quadrangle is convex (Fig. 5.a). From two available
variants we choose such that gives criterion Kr(z;) to be smaller.

2.2.2) The obtained quadrangle is not convex (Fig. 5.b). Then we com-
plete the step without changing the triangulation.

In this way, the process is periodically repeated for all nodes z of (2,
where Kr(z) > 4. It should be pointed out that the eflectiveness of algorithm
will be better, if we move forward by front through inner nodes along the
convective flow.

5 The numerical experiment

For the numerical experiment we considered problem (2.1) — (2.2) with
coefficients by = —1, bs = 0.7. The function g is equal to zero on the
boundary I' except for two sections

I ={(z,y) : = =0, y € [35/40,39/40]}

and
I, = {(xay) rx=1,y¢€ [1/4075/40]}
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I

Fig. 6: The characteristics of the reduced equation.

(see Fig. 6), where g equals 1. The right-hand side is identically equal
to zero on the 2. For £ = 0 the exact solution of reduced problem is the
function uo which is equal to 1 in band ¥ and 0 outside it (see Fig. 7, 8).
The band ¥ represents the parallelogram with sides I7 and I5.

Fig. 7: The exact solution. Fig. 8: The isolines of exact solution.

In square 2 = {(z,y): 0 < £ <1,0 < y < 1} we build the uniform
triangulation with the mesh-size h = 1/n by means of two families of lines
z; =1th, y; = jh, i, =1,..,n — 1, and then construct the diagonals in the
obtained elementary squares with angle /4 to axis Oz.

Then we build the grid aproximation in the following way. To aprox-
imate items Awu we use on the uniform five-point stencil ”cross”. As the
aproximation of item & Ou/dz + by Ou /Oy, we realize it on the constructed

triangulation.
This triangulation is unsuccessful (Fig. 9) in term of the value of orien-

tation. Solving the problem for n = 40 with this triangulation, we do not
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(\\ — O O\ O

/
/

Fig. 9: The inital triangulation. Fig. 10: The grid after the first
reconstruction.

s
e ety
e e o
e a4y A |
-y

Fig. 11: The numerical solution Fig. 12: The isolines of numerical
on the inital grid. solution on the inital grid.

obtain even the qualitative similarity solution. The considerable ”transver-
sal” calculation diffusion appeares which washes out the solution (Fig. 12),
and obtained error equals 60% (Fig. 11).

Further the first reconstruction of grid is made, which we implement
according to section 5. It only reorients some diagonals without coordinates
modification of inner nodes (Fig. 10). Solving again the problem for n = 40
with this triangulation, we obtain the considerable improvement of the
solution quality. The essential decrease of computing diffusion took place
(Fig. 14), and the obtained error equals 20% (Fig. 13).

After the second application of the reorientation algorithm the new
nodes on the boundary of domain appear, which do not involve the increase
of the unknown values in consequence of known boundary conditions.
Apart from that, the recombination of inner grid nodes with each other
(Fig. 15) consequently decreases Kr(z;) in every inner nodes. The obtained
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Fig. 13: The numerical solution Fig. 14: The isolines of numerical solu-
after the first grid reconstruction. tion after the first grid reconstruction.

Fig. 15: The grid after the second Fig. 16: The grid after the third
reconstruction. reconstruction.

error is not greater than 10% (Fig. 17) and we note some decrease of the
solution wash-out (Fig. 18).

After the third reconstruction of grid (Fig. 16), we obtain the consid-
erable improvement of solution. Apart from similar qualitative behavior of
the solution (Fig. 19), we also obtain good quantitative similarity.

Thus, this numerical experiment illustrates the successive improvement
of numerical solution on first three stages of the grid reconstruction due to
strengthening of the orientation along the characteristic curves.

References

1. Vishik M.I., Lyusternik L.A.: Regular degeneration and boundary layer for
linear differential equations with a small parameter. AMS Translations, 1975.



194 Kalpush T.V., Shaidurov V.V.

i
Fig. 17: The numerical solution Fig. 18: The isolines of numerical solu-
after the second grid reconstruction. tion after the second grid reconstruction.
[
[
Fig. 19: The numerical solution Fig. 20: The isolines of numerical solu-
after the third grid reconstruction. tion after the third grid reconstruction.

2.

3.

Doolan E.P., Miller J.J.H., Schilders W.H.A.: Uniform numerical methods for
problem with inital and boundary layers. Boole Press, Dublin, 1980.

Liseikin V.D., Petrenko V.E.: Adaptive invariant method for numerical solu-
tion of problem with boundary and inner layers. Novosibirsk, 1989 (in Rus-
sian).

Ladyzhenskaya O.A., Uraltseva N.N.: Linear and quasilinear equations of el-
liptic type. Moscow, Nauka, 1973 (in Russian).

Miller J.J.H., O’Riordan E., Shishkin G.I.: Solution of singularly perturted
problems with e-uniform numerical methods — introduction to the theory of
linear problems in one and two dimensions. World Scientific, 1995.

Bagaev B.M., Shaidurov V.V.: Variation-difference solution of equation with a
small parameter. In: Differential and Integral-Differential equations, Novosi-
birsk, Nauka, 1977, pp. 89-99 (in Russian).

Shaidurov V.V., Tobiska L.: Special integration formulae for a convection-
diffusion problem. East-West J. Numer. Math., 1995, vol .3, Ne. 4, pp. 281—



A difference scheme for convection-diffusion problem 195

299.
8. Voevodin V.V., Kuznetsov Yu.A.: Matrices and computations. Moscow,
Nauka, 1984 (in Russian).
9. Samarskii A.A.: Inroduction in difference schemes theory. Moscow, Nauka,
1971 (in Russian).
10. Shokin Yu.l.: Method of differential approzimation. Novosibirsk, Nauka, 1979
(in Russian).



196 Bykova E.G., Shaidurov V.V.

A two-dimensional nonuniform difference scheme
with higher order of accuracy

Bykova E.G., Shaidurov V.V.

Introduction

The present paper is devoted to construction and justification of nonuni-
form difference schemes of higher orders of accuracy for two-dimensional
boundary-value problem for elliptic type equation on a rectangle. The gen-
eral idea of construction of such scheme is similar to that in the paper [1],
where it is stated for ordinary differential equation, but the increase of di-
mensionality has complicated both the scheme and the proof of its accuracy.
Nevertheless, the fourth order of accuracy in uniform norm is proved for the
constructed scheme, and this fact is illustrated with numerical examples.

As it is in one-dimensional case, the difference scheme is similar in struc-
ture to the system of the method of extrapolated equations by U. Riide [2]
for finite elements. However, the proof of accuracy of the constructed scheme
differs from substantiation of U. Riide method based on minimization of
functional.

Let recall that the standard difference method with the second order of
accuracy on a rectangle gives a system of linear algebraic equations with
five-diagonal matrix under corresponding ordering of unknowns. The scheme
constructed here results in a system of equations with nine-diagonal matrix
preserving the basic properties: positive definiteness, symmetry and positive
invertibility.

Let also recall that the term “nonuniform scheme” had appeared due
to different rules of construction of grid equations in neighbouring nodes
as distinct from uniform schemes [3], where the rule of construction is the
same for all nodes of the grid.
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1 Boundary-value problem and its nonuniform
difference approximation

Let {2 be unit square (0,1) x (0, 1) with boundary I". Consider a boundary-
value problem
—Au+du=f in 1, (1.1)
u=g on I

with smooth enough given functions
d, f € C'(12), (1.3)
d>0 in 1. (1.4)

These conditions ensure unique solvability of the problem. Suppose the so-
lution to be smooth enough:

u € C%(N). (1.5)

For difference approximation of the problem (1.1) — (1.2) construct an
uniform difference grid

wh:{zi,j:(xi,yj): z; = ih, Y =jh, 1=0,1,...,n, j:O,l,...,n}

with the step A = 1/n and even n > 4. Also, introduce the set of inner
nodes

wh:{zi,jGUh :i=1,2,...,n -1, j=1,2,...,n—1}

and divide it into the sets of nodes only with even indices, only with odd
indices and with indices of different evenness (the first index is even and the
second is odd, or vice versa):

Woo={2;€wp: 1=0,2,...,n, 5=0,2,...,n}, woo =Woo \ I}
wn:{zi,jEwh: i:1,3,...,n—1,j:1,3,...,n—1},

Wn ={z;€wp: 1=0,2,...,n, 5=13,...,n— 1}, w1 =01 \ I
Wio = Wp \ @oo Ywi1 UWm), wip =wio \ I*

The standard finite difference approximation of the equation (1.1) con-

sists in change of the second derivatives with respect to  and y with the
second central differences

uge (@) = (u(@,y — h) - 2u(z,y) + u(z,y + h)/h’. '
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As a result, the following grid problem is obtained:

LMP =f in wp,

(1.7)
=g on w=INw,
with the difference operator
LM(z) = —vso(2) — vaa(z) + d(2)v(2). (1.8)

The second order of approximation is established by Taylor-series expansion
of the solution « [3], and on the basis of difference maximum principle [3]
the stability of solution in the grid norm
llv]loo,@s = max [v(2)]
ZEWh
is proved. On the whole, this gives convergence of the approximate solution

u® of the problem (1.7) to the exact solution u of the problem (1.1) — (1.2)
with the second order of accuracy:

4 *
la* = ulloog, < erhllufl g (19)
here the following denotation is used:
k 8i+ju
||u||<(>o)§ = > oziow || -
! Y 0, {2

0<i+j<k

with integer k > 0 and

llull o, = sup [ul-
(7]

For construction of a scheme of the fourth order introduce an operator
with doubled step

Ly (z,y) =—(v(z —2h,y) + v(z,y — 2h) — dv(z,y)
+v(z + 2h,y) + v(z,y + 2h))/4h* + d(z, y)v(z,y)

only in even nodes wyo-
With the preceding notations consider the difference problem

Lhyh = f in wy \ woo, (1.10)
Lhyh — L2hyh =0 in wyo, (1.11)
uh =g on . (1.12)

“JHere and below we denote by a symbol ¢; with integer indices ¢ various con-
stants independent of z and h.
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This grid problem as well as (1.7) contains (n + 1)? unknowns and (n + 1)2
equations. In even nodes nine-point stencil is obtained (Fig. 1. b), and in
other nodes the scheme has a standard five-point stencil (Fig. 1. a).

1

T an2
1 L
2
- h — 3z
1 1 1 1 1 1
h? h?  4h2 h? h? 4h2
4 3
h2 + d h_2
1
.. 0z
a) b)
1
4h?

Fig. 1: Stencils of nonuniform difference scheme in even (b) and other (a)
nodes.

For the functions defined on 2 apply the denotation
vs,; = v(zg,y;) = v(ih, jh).

In the equations (1.10) — (1.11) eliminate the boundary values (1.12).
The remaining unknowns and equations number from 1 to (n — 1)? in
lexicographical order determined by the inner nodes 211, z1,2,...,21,n-1,
22,153 %n—1,n—1. As a result we obtain a system of linear algebraic equa-
tions with symmetric sparse matrix A"

Aryh = Fh, (1.13)

By way of illustration in Fig. 2 the structure of nonzero elements of the
matrix AP for the step h=1/8 is given.
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Fig. 2: Structure of nonzero elements of the matrix A'/%.
The sign @ marks a positive element,
the sign B marks negative one, and their absence implies zero element.

For theoretical consideration it is useful to write down the system
(1.10)—(1.12) in vector form as well. To do this, number unknowns and
equations from 1 to (n + 1)? in lexicographical order determined by the

nodes zgg, 201, - --»20m, 2105 - - - s Znn- AS a result, we obtain a system of lin-
ear algebraic equations with a matrix B"
Bhyh = Ggh, (1.14)

2 Stability and solvability of the grid problem

Let proof that matrix of the system (1.13) is positive definite.

Theorem 32. If the condition (1.4) is satisfied, then the matriz A" of the
system (1.13) is positive definite.

Proof. Multiply left part of each equation (1.10) and (1.11) by hu”(2) with
corresponding z and sum over all z € wy:

h Y ul(2)LMut(z) -k Y ut(2)LPul(2). (2.1)

ZEWH ZEWoo
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Set u* = 0 on 3, and for the obtained expression apply difference analog of
the first Green function [3], going over to index notations:

h Y ul(z) Lt (2 thw ult)

ZEWH i,5=1

(2.2)
1 ¢ h B2 h Y
+E Z [(udy =y ) + (uy —ul;1)?],
4,j=1
n/2-—1
2h Z L2h h( =2h Z d2i721'(u§i,2j)2
ZEwoo 4,7=1
(2.3)
1 n/2
+ﬁ [(Ugmj - ugi—2,2j)2 + (Ugmj - ng',2j—2)2]-
4,j=1

For real numbers a, b the equality a® + b > (a + b)?/2 is true, from which
follows that

(Ugmj - ng'—1,2j)2 + (Ugmj - ng',2j—1)2

+(ng'—1,2j - ng'—2,2j)2 + (ng',2j—1 - ng',2j—2)2 (2.4)
Lo n R R R

<z [(Um 2§ u2i—2,2j)2 + (ug; 05 — u2i,2j—2)2:| .

-2

With account of this inequality the expression (2.1) is estimated from below
by the value

3 n
4h Z [(“?,j - “?—1,1)2 + (U?,j - “21—1)2]
i,7=1

(2.5)
n—1 n/2
+h Z di,j(u?’j)2 —h Z dgmj(ugmj)2.
6, j=1 i,j=1
The sum hZ"/2 d;,j(u};)? contains all the terms hZ%il dai,2j (uf; 5;)%.
Therefore the dlfference
n/2 n/2

th,] hzd2z2] U2z2])

i,5=1 i,5=1



202 Bykova E.G., Shaidurov V.V.

is nonnegative. The first sum in (2.5) is estimated from below by means of
the equation [3]

n n
1617 Y (uf)? < Y- [(uly —uly )® + (Wl —uf; 7], (2.6)
,j=1 ,j=1

which is an analog of embedding of norms from H; (£2) into L?({2). Finally,
the expression (2.5) is estimated from below by the value

12h ni: (uf)® =12k ) (uh(2))>. (2.7)

4,7=1 ZEWR

Comparing it with (2.1) we arrive at the statement of Theorem. O

Symmetry and positive definiteness of the matrix A" lead to two useful
conclusions. First, the system (1.13) has unique solution u* for any right
part F”*, which follows from inadmissibility of zero eigenvalue of the matrix
AP Second, for approximate solution of the system (1.13) an application of
a number of various direct and iterative methods [4] becomes possible.

Now, let show that the system (1.14) satisfies comparison theorems
despite that it is not M-matrix. For this purpose introduce a denotation
G" < 0 for the vector G* with components G%, j = 1,...,(n + 1), which
signifies component-wise comparison.

Theorem 33. Let the condition (1.4) be satisfied and step h be small

enough:
h < 2/(6lld] - (2.8)

Then for the system (1.14) from G* > 0 the inequality V" > 0 follows.

Proof. In order to use standard results on M-matrices it is necessary that
diagonal elements would be positive and off-diagonal ones do nonnegative.
This condition is satisfied for equations in the nodes wiq, wio and wor,
but not for equations in the nodes wgp (see Fig. 2). Therefore slightly
transform the system (1.14) or, what is the same, the system (1.10) —
(1.12) so that to get rid of positive off-diagonal elements in the nodes wgo.
For that, to each equation corresponding to (z,y) € wge add four equations
corresponding to the nodes (z + h,y = h) € wy1 with a weight a and four
equations corresponding to the nodes (x & h,y) € wio, (x,y £ h) € w1 with
a weight b. As a result, in a node (z,y) € wgo we obtain an equation with
the stencil



A two-dimensional nonuniform difference scheme 203

gs 94 gs
+ +

gs 94 gs
+ +

Fig. 3: 21-point stencil of the equation
in a node (x,y) € woo after transformation.

shown in Fig. 3., where

3 4b

"=

1 4 2a

4 2b
gs=a (h—2+d) Y (2.9)

_ 1 _b

g4_4h2 h27

a
95=—h—2-

Let try to choose the weights a,b so that in the equation obtained after
transformation the diagonal element would be positive and off-diagonal el-
ements do nonnegative. This will be true if

9120, g2<0, g3<0, g4<0, g5<0. (2.10)

This results in the problem to determinate the admissible state. Let for
a step h the condition (2.8) be satisfied. Then the problem (2.10) has a
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nonempty set of admissible values, from which we choose
a=1/20, b=1/4. (2.11)

Finally, the following coeflicients of the stencil in Fig. 3 are obtained:

2 1 d
B= 5 92:_W+1’
3 d 1
gsz—w'i'%, 94 =0, 95 =~ 502"

It is easy to verify that under the condition (2.8) we arrive at the inequalities
(2.10). Thus, instead of (1.14) we obtain a system

B'Vvh=G (2.12)

with M-matrix B and the same solution V*. Due to positiveness of the

weights a, b the inequality Eh > 0 is true. Therefore on the basis of the
properties of M-matrices [3]

V>0, O

Prove an a priori estimate useful for further reasonings.

Theorem 34. Let for the problem

PP =g" in wy \ woo,
Pyl — L2Ph = gh  in wyo, (2.13)
v =g" on

the estimates (1.4) and (2.8) be fulfilled. Then

11
1" | oz < 35 19" oo + 18" oo, - (2.14)
Proof. Introduce a function
w=c3+cz(l—z) in 02 (2.15)
with the constants
11
s =[0"l» 4= 15 19" corn (2.16)
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Note that
LMy = Lw =dw + 2¢4 > 2¢4  in wp, (2.17)
Ly = Lw = dw + 2¢4  in wyo. (2.18)
Therefore for the nodes (z,y) € wp \ woo we have
LPw > 2¢4 > ||gh||oo’wh > |gh| . (2.19)
For the boundary nodes (x,y) € 7, it is also evident that

w2 9" 2 19 (2:20)

Consider grid operator in a node (z,y) € woo, which is transformed
according to the rule pointed out in Theorem 2:

L' — L"w + a (L"w(z + h,y + h) + L"w(z — h,y + k)
+LMw(z + h,y — h) + L"w(z — h,y — h)) + b (L*w(z,y + h)
+Lw(z,y — h) + L'w(z + h,y) + L"w(z — h,y))

> 8acy + 8bey = ?q > 15—1 llg"|| (2.21)

00,Wh
>|g"+a(g"(z+hy+h)+g"(x—hy+h)
+¢"(x + h,y — h) + g"(x — h,y — h)) +b(g"(z,y +h)
+9"(@,y — h) + ¢"(x + h,y) + ¢"(z — h,y))]| .

Introduce vectors V* and W with the components

Vh — {Ulhj}n-i-l Wh _ {wij}n+1

,7=0" 4,5=07

which are ordered as in the system (1.14). Then from the inequalities (2.19)
— (2.21) it follows that

B'"W">B'V", ie. B (Wh-V") >0.
From the properties of M-matrices it follows that
Wh—_vVE>0, ie. w>ov"* in w.
Similarly, from (2.19) — (2.21) it follows that

w > —v" in Wy
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Therefore
W*|<w in @ (2.22)

In the left-hand side take maximum over wp, and in the right-hand side do
over (2. Finally we obtain

0" < 5+ 1/,

that is equivalent to (2.14). O

3 Convergence of the nonuniform difference scheme

Theorem 35. Let u,u” be solutions of the problems (1.1)~(1.2) and (1.10)-
(1.12), respectively, and the conditions (1.3) — (1.5) be satisfied. Then

llu = u*lloomn < esh™. 3.1)

Proof. We will establish a finer structure of the error. Let prove that the

solution u” can be represented as
wh=u+ h4ph in w, (3.2)
uh=u + ’LU01h4 + h4ph in Wy Uwio, (33)
u® = u+ weoht + A1p" in Wo, 34)

where the functions

*u 8w

1
Tagh Woo =T ofh K=ot oyt (3.5)

Wo1 =

does not depend on h, and the remainder term p” is limited in the following
way:
dl < cg. (3.6)

o0,Wh —

I2

In the expression (1.7), apply Taylor series expansion from the points (z £
h,y) and (z,y L h) into the node (x,y). Further we omit the argument (z, y)
if this does not arouse misunderstanding:

Pu RO,

A RNTY P
(3.7)
8%y k%20
Uso = = + + h4,u?y,

W oy T 1204t
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where
1 || 8%
] < o (| s in w,
1= 360 || 02 || o
(3.8)
1 || 8%
T e
Y1 =360 || 0y° || oo 3

With consideration of the expansions (3.2), (3.4) and (3.7) for odd nodes
w11 We obtain
Lhyt = LM+ b p" — B2 (wor (z + R, y)

(3.9)
“+wWo1 (.’IJ —h, y) + w01(x,y + h) =+ wo1 (.’L',y — h))

For the function wg; use Taylor series expansion from the points (z £ h,y)
and (z,y £ h) into the node (z,y):

wor(z + h,y) + wor (x — b, y) + wor (z,y + h) + wor (z,y — k) (3.10)
= dwor +2h%uly,
where with account of (3.5) we have

8w 8w
h 01 01
2 |'“01| < H o2 8y2

1
= gl (3.11)

Taking into consideration the expansions (3.7), (3.10) into (3.9), we obtain

the equality
h2
LM = (—Au + du) — Tl
—h*(uly + pty) + B — 4h%wor — 2h* paor.

On the basis of equations (1.1), (1.10) and definitions (3.5) a cancellation
of terms of the orders 1 and h? is performed. Divide the remaining terms
by h*. As a result we arrive at the inequality

Lhpl =yl + ply + 20y, in wi. (3.12)

Substitution of the expansions (3.3), (3.4), (3.10) into the grid operator
(1.11) for even nodes wqg gives the following:

Lhuh _ L2huh — Lhu _ L2hu + h4(thh _ L2hph)

(3.13)
+h4 (4’LU00/h2 + d’LUoo) — 4h2’LU01 — 2h4,u,g'1.
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In odd nodes wqp expressions similar to (3.7) are valid, but with doubled
step, which gives

h2
LM = (Ao dhe) = "o Ol 4, (3.14)
where
0%u 8%
— i . 3.15
|:u’2w| —= 45 ‘ 81,'6 ﬁ, | > 45 ‘ ayﬁ B m  Woo ( )

Taking account of (3.14) in (3.13), we obtain the equality

Lhyl — [2Pyh = pA (LM p" — L2 p") + 4hwoo + dwooh® — 4h%wer — 2h* pl
h2

h2
— gk~ Wt — Wty + e+ B, + B,

Again, on the basis of equations (1.1), (1.10) and definitions (3.5) the cancel-
lation of terms of the orders 1 and h2 takes place. In this case the cancellation
of the terms of order h? is performed due to proper choice of multiplier at
L?hy?. The remaining terms after division by h* give the equality
Lhph — LPMph = pl, + ity — b, — phy — dwoo  in woo. (3.16)
Substitution of the expansions (3.2), (3.3), (3.4) into the grid operator
(1.10) for nodes with alternating evenness of indices wqo gives the relation

Lhuh — Lhu + h4thh
(3.17)

4w woo (% + h,y)  woo(z — h,y)
4 01 00
+h (( 52 + dwO1) - W - % .

For the function wgo apply Taylor series expansion from the points (z+h,y)
into the node (z,y) similarly to (3.10), (3.11). This yields the equality:

woo (€ + B, y) + woo(z — h,y) = 2woo(x,y) + b ugy(z,y),  (3.18)
where with account of (3.5) we have
AR (3.19)

Taking into account the expansions (3.7), (3.18) into (3.17), we obtain the
equality

2
LM = (—Au+du) - %M +hiLRp" + dhPwoy

+h*dwor — 2h%wee — K pl, — h4,u?y — htuls
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Again, on the basis of equations (1.1), (1.10) and definitions (3.5) cancella-
tion of terms of the orders 1 and h? takes place. Finally, after division by
h* we arrive at the equality

LMp" = —dwoy + pfy + pl, + pho in wio. (3.20)

Similarly for the nodes of another group of alternating evenness wg; we
obtain the equality

Lh " = —dwor + plfy + pty + 150 I won (3.21)

with the same estimate (3.19) for the remainder term gl
Taking into consideration (3.3), (3.4), (3.12), (3.16), (3.20), and (3.21),
for p* we obtain the problem

thh = fh in Wh \ Woo,

Lhph — L2hph = € in wy, (3.22)
P =—wor in v, N @o Uio),
Pl = —woo in Y4 NWoo

with the right-hand side
g =l + /J’{Zy +2u5 in wi,
¢ = —dwor + piy + Yy + g in wor Uwio,
e =l + ul, — pl, — plh, — dwoo in woo.
Owing to the estimates (3.8), (3.11), (3.15), (3.19) and boundedness of
functions d and g from (3.5) the following inequality is valid
|€" <er in wh. (3.23)

Use the a priori estimate from Theorem 3. Then with account of (3.5) we
have " )
h h

loo.z, < 35 16" oo, + T l1llo0 (3.24)

Taking into account the estimate (3.23), we obtain (3.6) with the constant

e

c6 = 11c7/48 + || lloo v /12-

From the representation (3.2) — (3.4) it follows that

||’LL - uh”oo,wh S h4 (”ph”OO,wh + ||’LU01||00’§+ ”wOO”oo’ﬁ) )

With account of (3.24) this proves the estimate (3.1). O
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4 Numerical examples

By analogy with the work [1] apply the constructed method to two problems
of the form (1.1)—(1.2) with smooth and with oscillation solutions. The first

problem is
y(1-— )cos( )
+(1 —z)sin ( ) ) cos (772_3/)
—xsm( )7r cos( Qy)
+%x(1 — x)cos (%) 7?y(1 — y) cos (%y)
+2z(1 — z) cos (W;) cos (%y) (4.1)
+z(1 — ) cos (%) (1—y)sin (%y) s

—z(1 — z) cos (%) ysin (772_3/) 7 in 1,
u=0 in I.

—Au = 2cos( )

Its exact solution is
u(z,y) = z(1 — z) cos (%) y(1 —y) cos (%) .
The second problem is

—Au= —-32¢(1 - 2)y(l —y) +512sz(1 — z)y(1 —y)
+32czy(l —y) +2sy(l —y) — 32cz(1 — 2)(1 — y)
+32cz(1—z)y +2sz(1 —z) in {2, (4.2)
u= 0 in I,

where the denotations s = sin(16z + 16y) and ¢ = cos(16z + 16y) are used.
Its exact solution is

u(z,y) =sin(16z + 16y)z(1 — z)y(1 — y).
In Tables 1,2 the errors ds = ||u — u"||c0,z, and

1/2
81 = llu = ut|laz, = (Z (u(2) —uh(z>)2>

ZEWR
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of solutions of both the problems by standard method (1.7) of the second
order of accuracy and by the proposed method (1.10)—(1.12) of the fourth
order are presented.

Table 1: Error of approximate solutions
for the problem with smooth solution.

Problem I
N method (1.7) method (1.10) — (1.12)
2,wp, o0, Wh, 2,wp, o0, Wh,
4 1.18190 — 03 2.2415 - 03 6.7310 — 04 2.2019 — 03
8 2.92,9— 04 6.11,0 — 04 4.3019 — 05 1.64;9 — 04
16 | 7.27,0—05 1.52;5— 04 2.6819 — 06 1.0219 — 05
32| 1.82;9—-05 3.8219 — 05 1.6819 — 07 6.46,9 — 07
64| 4.54,9 — 06 9.54;9 — 06 1.06;9 — 08 4.08;9 — 08
Table 2: Error of approximate solutions
for the problem with oscillating solution.
Problem II
N method (1.7) method (1.10) — (1.12)
2,wp, o0, Wh, 2,wp, o0, Wh,
4 1.38190 — 01 2.7010 — 01 1.5310 — 01 3.64,9 — 01
8 1.1819 — 02 2.6719 — 02 4.7019 — 02 141,,-01
16 | 2.42,5—03 5.7610 — 03 2.5710 — 03 1.04,4 — 02
32| 5.78;0—04 1.3910 — 03 142, - 04 6.0019 — 04
64| 1.43;0—04 3.52190—04 8.4519 — 06 3.6110 — 05

These data are represented on graphs (in logarithmic scale over both
axes). In figures 4 and 5 the errors é; and 2 of the method (1.7) are de-
noted by numbers 1, 2; The errors of the method (1.10) — (1.12) are de-
noted by numbers 3, 4; numbers 5 and 6 denote the lines with inclinations
tg(p) = 2 and tg(p) = 4, characterizing the dependences 6 = h? and 6 = h*,
respectively.
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Fig. 4: Error of approximate solutions for the first problem.
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Fig. 5: Error of approximate solutions for the second problem.
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Except that, in Fig. 6 a pointwise graph of the error 6, = u — u”* of the
proposed method (1.10)—(1.12) on a grid @y with the step h = 1/32 for the
first problem is given.

Vo,
“"! v
'y
“ o é‘hié 'ﬂ’%
\ \“ = iv"éj;ﬁ;‘f’*
’

rav ol

-3.23

-6.46 \

16 _

Fig. 6: Error §; of the method (1.10)—(1.12) under n = 32. The first problem.
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A nonuniform difference scheme with fourth order
of accuracy in a domain with smooth boundary

Bykova E.G., Shaidurov V.V.

Introduction

The present paper continues a series of works devoted to construction and
justification nonuniform difference schemes of higher degrees of accuracy.
Two-dimensional boundary-value problem for elliptic type equation in a
domain with smooth curvilinear boundary is considered. The main idea of
construction of such scheme is similar to that in the papers [1], [11], where it
is stated for the same equation in a rectangle. The transition to curvilinear
boundary required either to solve the question on special approximation of
boundary values or to re-construct the grid equations on non-standard sten-
cils near the boundary. Both approaches were used as applied to Richard-
son extrapolation in [2], [3] and [4], [5], [6], respectively. The first, although
leads to required result, gives extensive stencils; the second, being more
complicated in theoretical respect, gives more compact stencils of difference
equations near the boundary, so it appeared to be more preferable.

As it is in one-dimensional case, the difference scheme inside the do-
main is similar in structure to the equations of the method of extrapolated
equations by U. Riide [7] for finite elements. But near the boundary the
equations appear to be different. The justification of accuracy here is also
different from [7] and based on the maximum principle for a system of linear
algebraic equations equivalent to the difference scheme.

Let recall that the term nonuniform scheme was introduced in [8] and
used in [1] due to two different rules of construction of grid equations in
neighbouring nodes as distinct from uniform schemes [9], when the rule of
construction is the same for all nodes of the grid, at least inside the domain.
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1 Boundary-value problem

Let £2 be a limited domain in R? with smooth boundary I" (i.e. of the class
C1). Consider a boundary-value problem

—Au+du=f in (2, (1.1)
u=g on I

with continuous on 2 functions d, f and continuous on I" function g, and
d>0 on (. (1.3)

These conditions ensure unique solvability of the problem. Suppose that the
solution is smooth enough:
u € C%(N). (1.4)

2 Construction of the difference grid and classification
of its nodes

Likewise in [6], suppose that the domain (2 is located within the square
{(z,y): 0<z<1, 0<y<1}. Cover it with a square grid with the step
h = 1/N, formed by the lines z; = ¢h and y; = jh, where i, =0,1,...,N
and N is integer. Let call nodes the points of intersection of these lines. A
node z;; is called inner, if z;; € £2. Denote the set of all inner nodes by wy,.

Each line of the grid z; or y; which intersects (2 also intersects the
boundary I. Due to smoothness of the boundary the intersection with the
domain consists of certain number of intervals. Let call the end of these
intervals boundary nodes in direction z (or y), if the line being considered is
parallel to the coordinate axis Oz (respectively Oy). The set of all boundary
nodes in direction z denote by 7s,;, and the set of all boundary nodes in
direction y denote by 7,,. Also denote

Yo =Yz Urhy and wWp=wp U
For convenience, let divide the set wy, into four subsets

woo = {2ij 1 2ij € wp, ©is even, jis even};
wo1 = {#ij 1 2ij € wp, 118 even, jis odd};
wio = {24 1 2ij € wp, 118 odd, jis even};
wi1 = {zij 1 25 € wp, ©is odd, jis odd}.
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For each inner node z;; = (x;,y;) introduce two definitions of the dis-
tance to the boundary I which is parallel to two coordinate axes:

p1(zi, ;) = min |z; — x|,
p2(zi, ;) = Win ly; — 9l

With the help of these definitions introduce a classification of the inner
nodes wy,. Geometric illustration of this classification is given at the end of
the paper for a concrete numerical example. Denote by 711’ 5, the set of inner
irregular nodes of the first type, for which only one of the distances p; or po
is less than h, and the another is greater than or equal to 2h:

Yi,n ={2ij 1 zij € wn, (p1(2i5) < h) & (p2(2i5) > 2h)
or (p1(zs) > 2h) & (pa(zis) < W)).

By 712’ ;, let denote the set of inner irregular nodes of the second type, for
which both the distances p; and ps are less than h:

Vin={2j: 2ij € wn, (p1(zi) < h) & (p2(2i5) < h)}.

Respectively, by 713’ 5, let denote the set of inner irregular nodes of the third
type, for which at least one adjacent node z; j+1, 2i+1,; belongs to 712’,1:

3 _ . 2 L 2
Yin = {%ij 1 2ij € Wh, Ziv1,j € V,p OF 2im1,5 € Vg

2 2 *

or 2;,j4+1 € Y1,n O Zi,j—1 € 71,h}‘ )

By 774 denote the set of external irregular nodes z;;, for which at least one
adjacent node zit1,, 2,j+1 belongs to v , U7} .

out __ . re) 1 3 1 3
on = {2525 & 2, ziv1; €N pYUNIH O 2im15 €V p Ui g

1 3 1 3
or zij+1 € Y, Ui e OF 2ij—1 € Y1, Ui p}-

Now, let classify the nodes from wgyg near the boundary, which have not
come into ] ,, 775, OF 7 1, Denote by 72,5, the set of multiple nodes near
the boundary, for which at least one of the distances p; or ps is less than
3h, i.e.,

Yo,n = {2ij : 2ij € woo \ (’Yih U ’Yf,h U 713,h),
(o1 (215) < 31) or (pa(zi5) < 3R)}.
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By 73, denote a subset of nodes from 7y 5, for which at least one of the
distances p; or ps is less than 2h:

Yo = {2ij : zij € Y2.n, (p1(2i5) < 2R) or (p2(2i5) < 2h)}.

By 73 5, denote a subset of nodes from 7z, for which both the distances p1
and po are greater than 2h:

Y = {zij - 2ij € yan, (p1(2i5) > 2h) & (pa(2i5) > 2h)}.
And, finally, by 723’ 5, let denote a subset of nodes from s 5, for which only
one of the distances p; or pg is greater than 2h, and the another is greater
than 3h:
Von = Y20 \ (V2 U3 0)-

For convenience of subsequent consideration, let divide 713’ ;, into three sub-
sets:
1) 77}, consists of nodes whose both adjacent nodes belong to 77 ;;
2) 777, consists of nodes whose one adjacent node belongs to 77 ,, and the
other one belongs to fyff‘,f;
3) ’Yish = 7§,h \ (’Yf,lh U 713,2h)-

Make a classification of regular nodes. Let call a node regular of the first
kind, if it belongs to wp, \ woo and is not included in v 5, 77, 7% 5; denote
the set of such nodes by

wh1 = wh \ (woo U ’Yih U 712,h U 713,h)-

Let call a node regular of the second kind, if it belongs to wgg, but is not
included in 9 3; denote the set of such nodes by

who =woo \ (Y2, UM 5 U n UM 4)-
The totality of regular nodes denote by wj = wj, ; Uwy, 5, and the nodes
wir = wp \ {wz uni h} let call irregular one.

For an arbitrary function v defined on a set D (finite or infinite) let
introduce the denotation

[9lloo, 0 = sup|ov].
D

3 Interpolation formula

For interpolation of boundary values we will use the interpolation formulas
of two forms, selected in each case for ensuring stability (the stencils are
shown in Fig. 1).
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—4h —3h —2h —h 0 oh h
|

t

Fig. 1: Stencil of Lagrange interpolation formula; 0 <4 < 1.

Let the function v(t) € C*[—3h,dh). The first of the formulas approxi-
mates the value v(0) through the values of the same function in the points
—h, —2h, —3h and 6h (0 < 6 < 1):

v(0) = ¢1(v(—h),v(—2h),v(-3h),v(6R)) 3.1)
36 36
= — p(— —_ -2 —
Fn 111( h) Fn 211( h) + v(=3h) + ¢17(8)v(h)
where ¢17(8) =6/((6 + 1)(6 +2)(6 + 3)).

Now, let supplement the definition of the function v to the right from dh

with a segment of Taylor series with respect to h up to the fourth derivative

inclusive. Let keep the denotation v(t) for the supplement, and note that it
belongs to C*[—2h, k], and

0+3

19 oo, —2,5) = 1190 lloo,[~25,58)-

The second formula expresses v(h) through four values in the points 0, —h,
—2h, and éh:

v(h) ~ p2(v(0),v(=h),v(=2h),v(dh)) (3.2)
- —3(15‘ 9 (0) + 3551; 16)v(—h) - (15 - gv(—Zh) + 924 (8)v(6h)

where @7 () = 6/(5(6 + 1)(0 + 2)).
Let recall [10] that interpolation over four nodes gives result with fourth
order of accuracy in the following form:

max {[v(0) — @1, [0(h) — 2|} < h*|[vW]|o 13,50 (3.3)
with the constant ¢ independent of h, v(t), and é € (0,1].

4 Construction of difference approximation

For difference approximation of the equation (1.1) introduce the following
operators:
L"(z,y) =(v(z — h,y) +v(z + h,y) + v(@,y — h) +v(z,y + h) -
(z,y))/P* + d(z,y)v(z,y), (4.1)
Ly(z,y) =(v(z — 2h,y) + v(z + 2h,y) + v(z,y — 2h) + v(z,y + 2h) —
v(z,y))/(4h*) + d(z,y)v(z, y)- (4.2)
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Start the construction of grid equations with the regular nodes. Let
Zij € wp 1. Then the difference approximation is performed as a standard
five-point equation

LM (2i5) = flzi), 25 € wh 1, (4.3)

on the stencil small cross (see Fig. 2.a)). But if z;; is a regular node of the
second kind, i.e., z;; € Wh 29 then the difference approximation is taken as
nine-point equation on the stencil large cross (see. Fig. 2.b)):

h, h 2
LruM(2;5) — LM (2) = 0, 25 € Wh2- (4.4)
2) b |
1n2
1 1
T h? T hZ
_1 _1 1 _1 _1 1
h? h? 4h? h? h? 4h2
4 3
Y; Srtdij Y; =
1 1
hZ T hZ
T;
1
4h?
z;

Fig. 2: Stencils a) small cross and b) large cross with the values of coefficients
of the operators L* and L* — L?*, respectively.

Consider the construction of grid equation in irregular nodes. Let z;; €
71, and one node of the stencil small cross, for instance, z;,;41 does not
belong to {2 (see Fig. 3.a)). Denote by s;; the point of intersection of the
boundary I" with the segment [2;;, 2; j+1]. At the beginning assume that the
solution u(z,y) is determined in the point 2; ;1 and write down an ordinary
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five-point equation (4.3). Then construct interpolation formula (3.2) for the
function u(z,y) with respect to y coordinate, directing the axis 0t from z;;
into #; j+1 and assuming ¢ be equal to the distance §, from z;; to sy, ie.,

0y = p2(2i5). As a result, we obtain five-point grid equation with the first
asymmetric T-shaped stencil :

i - 3L=0y)\  n Y i 3(1 —dy) e, .

(h2 +d(zi5) + 5,12 ) u”(z5) 72 + 10,1 u"(2,5-1)
1-6 1 1

+(2 ¥ (Sy?)Jh2 uh(zi,j—2) - ﬁuh(zi-i—l,j) - ﬁuh(zi_l,j) (45)

1
= f(zig) + 5302¢(8y)g(s35)
where the boundary condition (2) is used in the form wu(s;;) = g(sq5).

a) b)

Sij

NV >K \V
Zi+1j 2i—1j Zi+1j

R R Fi

N N

1 . t 2 . 33
Zij € Y15 Zij+1 € Mok Zij41 € Y pi Zij € Mo

Fig. 3: The first (a) and the second (b) T-shaped asymmetric stencils.
Cross sign marks the nodes of corresponding stencils.

Remark. Construction of grid equations is not performed in the nodes
zij € 7%,h‘ An attempt of double application of the above method in these
nodes (elimination of external nodes by means of mean value formula (3.2))
gives grid equations which do not provide sufficient conditions for compari-
son theorems and the proof of stability. Therefore the authors refused from
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use of grid equations in nodes of the set fyi 1+ Accordingly, the resulting sys-
tem of equations should not contain variables u"(z;;) with arguments from
7%,h‘

Taking into account the above remark, it is necessary to exclude the
values in the nodes fyi ;, from the other grid equations. Three variants are
possible when one or two nodes of the stencil small cross belong to ’Yih’
and there are two variants when one or two nodes of the stencil large cross
belong to 77 ;.

Consider these variants.

1) Suppose that z;; € 775 and one node of the stencil small cross, for
instance, z; ;41 belongs to 712’,1 (see Fig. 3.b)). Denote by s;; the point of
intersection of the boundary I" with the ray [2;;,2;41). At the beginning
assume that the solution u(z,y) is determined in the point z; ;11 and write
down an ordinary five-point equation (4.3). Then construct interpolation
formula (3.1) for the function u(x,y) with respect to y coordinate, directing
the axis 0t from z; j41 into s;; and assuming ¢ be equal to the distance J,
from z; j+1 tO 8;5, i.e., 6y = pa(2;,j41). As a result, we obtain five-point grid
equation with the second asymmetric T-shaped stencil:

4 v 80 N w1 3% N\ g,

(h2 + dlei) (5y+1)h2)“ (z13) (h2 (2+5y)h2)“ (1)
é 1 1

—Wuh(zm—ﬂ - ﬁuh(ziﬂ,j) - ﬁuh(zi—l,j) (4.6)

1
= flzi) + 5301£(8y)9(s35)-
2) Let 2 € 713’1,1 and two nodes of the stencil small cross, for instance,
zijr1 and zjy1; belong to 77, (see Fig. 4.). Both the values uP(2i j1+1)
and u”(2;41 ;) are eliminated by means of formula (3.1). As a result, we
obtain five-point grid equation with the first asymmetric I'-shaped stencil
(see Fig. 4.):

4 36 34,

= 4d(z) — z - Y By .
(h2 @) - G R TG, 1)h2) u(z)

1 35:5 By, N i _ i e
(h2 2+ 5w)h2) u (Zz—l,J) (h2 2+ (5y)h2) u (zm—l)
Oz 5
_muh(zi—m) - Wuh(zmﬂ)

(4.7)

= (i) + 5011 (B)9(s13) + 015 (3,)0 o1,

where 0, = p1(2i41,;) and 6y = pa(2;,j41).



222 Bykova E.G., Shaidurov V.V.

\ Sigy
Zij+1
Zij Sija
\/ I | |
N N f I
Zi—2j Zi-1j Zit1j
Zij—1 X r
0N
Zij—2 X

Fig. 4: The first I'-shaped asymmetric stencil.

Cross sign marks the nodes of the stencil. 2z;,;41 € ’Yf,h; Ziy1,j € ’Y%,h; Zij € ’yio’lh

3) Let 2;; € 7{%,, one node of the stencil small cross, for instance, 2;,j41
belong to fyi ;, and the second, for instance, z;11 ; belong to fyff‘ht (see Fig. 5.).
Both the values u”(z; j+1) and u"(2;41,;) are eliminated by means of cor-
responding formula (3.1) or (3.2). As a result, we obtain five-point grid
equation with the second asymmetric I'-shaped stencil (see Fig. 5.):

~+d

4 3(1 - 4,) 35,
(h2 (2i5) + A (5y+1)h2)uh(zz'j)

0% om oy (L 830 =0) N\ a
Broyprt Fui-?) (h2+(1+5w)h2 u(zi-1)

1 3%y M)+ 0 .,
(h2 (2+5y)h2)“ Fii) + g ymet (G)

= f(ai) + 5y 0a(B)9(513) + 1015 (0,)a(s13,)

(4.8)

where 6, = p1(2;;) and 6y = pa(2;,j41)-
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Sigy
Zij+1
Sija
Zij
N/ |
AN !
Zi—2j Zi—1j Zit1j

-1 K

#id—2 K

Fig. 5: The second I'-shaped asymmetric stencil.

Cross sign marks the nodes of the stencil. z; ;11 € fyf,h; Zit1,j € fyff‘ht; Zij € ’yi”h

Consider the equations in irregular nodes z;; belonging to 72,. There
are two variants when one or two points of the stencil large cross belong to
7%,h‘ Let 235 € 73,,1 and z;_9,; € 712’,1 (see Fig. 6.). Denote by s;; the point
of intersection of the boundary I" and the ray (2;—2,;, 2i;]. At the beginning
assume that the solution u(z,y) is determined in the point z;_s ; and write
down five-point equation:

1 1 1
(ﬁ + d(zz’j)) u”(2i5) — 4—h2uh(zi—2,j) - Wuh(zm,j)

1 1
— 5" (zi,j-2) — Z5u" (zi42) = fl2)-
4h 4h

(4.9)

Then construct interpolation formula (3.1) for the function u(z,y) with
respect to y coordinate, directing the axis 0¢ from z;; into z;_» ; and assum-
ing & be equal to the distance §, from 2z;_s ; to s;;. As a result, we obtain
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six-point grid equation with the first asymmetric X-shaped stencil:

1 3611 B by, . 3511 he .
(ﬁ t 6, v 2)ae +d(zm)) w*(zij) EST (2i1,5)
_muh(ziﬂ,j) - Wuh(zi-ﬂ,j) - Wuh(zi,jﬂ) (4.10)

1 1
—Wuh(Zi,j_Q) = f(z) + W%f(dy)g(sij)-

A2

< Zij+2

T %+l
Sij
| /4 I/ |
! N N AN
Zi—2j Zi—1j Zij  Ritlj Zit2j
-+ %ij—1

n
r K Zij—2

Fig. 6: The first X-shaped asymmetric stencil.

Cross-sign marks the nodes of the stencil. z; € 7§,h; Zi—2,; € ’yih.

Consider the second variant. Let z;; € 73,,1 and z;_3; € fyih, Zijt+2 €
7%,h (see Fig. 7.). Denote by s;;, the point of intersection of the boundary
I' and the ray (2;_2,j, 2], and by s;;, denote the point of intersection of
the boundary I" and the ray (2; j12,2:;]. At the beginning assume that the
solution u(z,y) is determined in the points z;_s j, 2; ;42 and write down
five-point equation (4.9). Then by means of formula (3.1) eliminate the
points belonging to ’Yih- As a result, we obtain seven-point equation with
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the second asymmetric X-shaped stencil:

1 30, 30y B
(ﬁ TG, v2ae T @, 2w T d(z“)) w(zi5)
36 34,
—muh(zmﬂ) - muh(zi—l,j)
) 0y
—muh(zm—l) - muh(ziﬂ,j)

1 1
—Wuh(zi,j—ﬂ - Wuh(zi,jﬂ)

1 1
= flzi) + W%f(fsw)g(sijm) + m%f(‘sy)g(sz‘jy)

where 6z = p1(2i-2,5), Oy = p2(zi,j12)-

225

(4.11)

In the rest of the nodes z;; € 73 5, the equations are constructed according
to the following principle. Let z;; € 721’,1, consequently, one adjacent node
belongs to ’Yih- Then in the point z;; an equation similar to (4.6) can be

constructed with elimination of the point belonging to fyi B

Thus, in the result of these constructions a system of linear algebraic
equations is obtained, which unites the equalities (4.3) — (4.8), (4.10), (4.11)
taken in corresponding nodes. Write down this system in operator form

At = on wa\in

(4.12)

with sought for grid function u”(2;;) and known right hand side f"(z;;)

with the argument 2;; € wp \ 77 -
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Sijy, T T

/

- Zij+2

X

Sija /
| / | 4 V4 {
H7 ! /N N N
7
Zi—2j Zi—1j Zij  Ritlj Zit2j
><Zij_1
n

X #i-2

Fig. 7: The second X-shaped asymmetric stencil.

Cross sign marks the nodes of the stencil. z;; € 7§,h; Zi—2,j € ’Yf,h; Zij42 € ’Y%,h-

5 Stability, solvability and convergence of the grid
problem

Transform the system (4.12) so that its matrix would be M — matrix. At first,
enumerate the nodes of the set wy, \fyi ;, from 1 to M and give corresponding
numbers to the equations in the nodes z;; € wy \ 712’,1 and the variables
u”(z;;). In order to utilize the standard results concerning M — matrices, it
is necessary that diagonal elements would be positive and off-diagonal ones
would be non-negative, and the sum of modules of off-diagonal elements
would not exceed a diagonal element. For equations in the nodes wj ,, fyilh,
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fyf?h, a5, these conditions are satisfied, but that is not true for equations in

1 .32
the nodes vy ,, V> W o

g5 94 gs
+ 3 +
gs g3 g2 gs 95
+ + T + +
94 g2 5 gz 94
gs g3 g2 gs 95
+ + - + +
g5 94 gs
+ + +
2 _ 1 n d
N=h 2T T Ty
= 3 + d =0
g3 = 10h2 207 ga =\,
_ 1
95 = " o0n2

Fig. 8: 21-point stencil of the equation in node z; € wj 5

after the transformation.

In order to eliminate positive off-diagonal elements, let add to each equa-
tion (4.4) in z;; € w}, , four equations in four regular nodes 2;41,j41 € W}, 1,
with weight a = 1/20, and four equations in the nodes zjt1,; € W},
zijx1 € wp, with weight b = 1/4 (for details see [11]). As a result, in
the node z;; € wj, we obtain an equation with the stencil shown in
Fig. 8 (compare to Fig. 2.b). Then, in addition, require that the following
inequality would be true:

h?* <2/ (5lldllco,mn) - (5.1)
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It is easy to verify that under this condition we come to the following in-
equalities for coefficients of the new grid equation with extended stencil:

g1 207 92307 93307 ,94:0, 95307
191 (2i5)| > |g2(zit1,5) + 92(2i-1,5) + g2(2i,541) + 92(2i,j-1)
+93(2iy1,5+1) + 93(2i—1,j+1) + 93 (2ig1,5—1) + 93(2i—1,j—1) + 85|,

which confirm both right signs of coeflicients of the stencil and diagonal
prevalence.

— —
g2 N g2
+94 1. g3 +94
+ 95
4 2(—=62+26,+3
91:_2+d ( bt £ D) )7
h 8,(2+ 8,)h
1
g2 _h_27
_ 1 5342 (1-4)d
B= T T T e,)2+ 000 T 240,
_ 1-4,
SN G TP

95 =0.
Fig. 9: 7-point stencil of the equation in the node z;; € ’yll,h
after the transformation.

Now, let zi; € 71, and 2ij11 € Y%, and 251 € w],. Add to the
equation (4.5) in the point z;; one more equation (4.3) in the regular node
%ij—1 € wp, 1, with weight a = (1 —4,)/(2 + dy). As a result, in the point
zij € fyi 5, We obtain an equation with seven-point stencil, as shown in Fig. 9

(compare to Fig. 3.a). It is easy to verify that under the condition (5.1) and
taking into account that d, € (0,1] we come to the inequalities

g1 207 92307 93307 94307 95307
g1 (2i5)| > 1292 + g5(2i,5—1) + 294 + gs|-
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n =

g2

g3 =
94 =—
g5 =

Fig. 10: 7-point stencil of the equation in the node z;; € 737

95
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%
(3 + 8,)h?’
1 62 — 36, +2 (1-40,)d
h?2  (1+6;)(2+d;)h? 244,
1-4,

“etoy =0

after the transformation.
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Let 2ij € V3%, 2it1,j € WY, and z;—1 j € w}, ;. Add to the equation (4.8)
in the point 2;; one more equation (4.3) in the regular node z;_1,; € wy,
with weight a = (1 —8;)/(2 + d;). As a result, in the point z;; € 777 we
obtain an equation with seven-point stencil shown in Fig. 10 (compare to
Fig. 5). Under the condition (5.1) and taking into account that d, € (0,1]
and &, € (0,1] we obtain the inequalities

91207 92307 93307 94307 95307 96§0a
l91(2i5)| > g2 + g5 + ga(2i-1,5) + 295 + gel-
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Thus, we obtain a system consisting of the equations corresponding to the
points belonging to w}, 1, 73}, 7% and ya5, and transformed equations
corresponding to the points belonging to w}, 5, 71 5, and ¥}7%,. With the regard
for the signs of diagonal and off-diagonal elements, diagonal prevalence and
indecomposability [9], the matrix of the transformed system is M-matrix.
The obtained equivalent grid problem can be written down as

Byt =g" on wy\ Y (5.2)
with the same unknown grid function u”* but with transformed right-hand

side g".

Theorem 36. Let the condition (1.3) be satisfied and the step h be small
enough:

h?* < 2/(5ldll o, )- (5.3)

Then for arbitrary right-hand side f" the solution of the problem (4.12)
satisfies the estimate

11
4" oo @2, < E”fh”oo,w; +1F*/8Mloo,wirs (5.4)

where S"(2;;) is the sum of coefficients of the grid equation (4.12) in the
node z;; and is strictly positive on wy.

Proof. Introduce a function
11, .,
wi(z,y) = az(l —2), a = Sl lleowy- (5.5)
Note that derivatives of the order 3 and higher of this function are equal to
zero. Therefore the exact approximation of the difference operators L*, L2*
and interpolation formulas is attained for this function. From this, under

the condition (1.3) we have

LPw, = Lwy =dwy +2¢1 >2¢1 >0 on  wp, (5.6)
L*hyw, = Lwy =dw; +2¢1 >2¢1 >0 on  woo. (5.7)

Taking into account (5.6), in regular nodes of the first kind we obtain

11
Bhw, = Lw; > F”f”m’wz > APy" = BRu™  on Wh1- (5.8)
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Similar expression for regular nodes of the second kind can be obtained by
means of the rule of transformation of the operator A* into B" (detailed
computations see in [11]):
12 11

B'w; > 52 g”f”oo,w;; > B"" on wj,. (5.9)
In irregular nodes, from the analysis of the rules of transformation of A"
into B® (i.e., possible addition of a regular equation with weight < 1/2)
with account of (5.6) or (5.7) it follows that

B"wy > Lw; >2¢;  on w?f. (5.10)
Introduce a constant function

wa(®,y) = ¢y where ¢y = ||f*/5"||oo uir- (5.11)

After the substitution of it into the operator B”, two possible situations
take place: either coincidence or lack of coincidence of the equations for z;;
in (5.2) and (4.12). In the first case (when 2z;; € wj ; U7, U, Uve,n) we
obtain

Bhw2 (Zij) = Ahw2 (Zij) = Cgsh(zi]’) Z 0, (5.12)

in irregular nodes being diagonal prevalence and the value of Sh(zij) being
strictly positive. In the second case the equation in (5.2) is obtained from
(4.12) by addition of regular equations with positive weights. Therefore (for
zij € wh o UM 5, UNP%) we have

Bhw2 (Zij) > Ahw2 (Zij) = Cgsh(zi]’) >0, (5.13)

the value of diagonal prevalence being not less in irregular nodes and S”(2;;)
being strictly positive again. So, combining the inequalities (5.12) and (5.13)
we obtain

BMws(2i5) >0 on W, (5.14)
By (2i5) > c2S™(2i5) > f*(2i5) on Wi (5.15)

Summing up the inequalities (5.8) and (5.9) with (5.19), we come to the
following expression in regular nodes

B"(w; +wy) > BMu" on wl. (5.16)

In irregular nodes this expression is obtained by summation of (5.10) with
(5.15) and taking into account the rule of transformation of A® into B":

Bh(w1 +wa) >2¢ +e2 >2¢ + APyt > By on w}'f.
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From two last inequalities on the basis of the comparison theorem [9] it
follows that

w +we >u” on wp\ Y4

After the replacement of f* with —f” the above reasonings give the evalu-
ation

2
wy + weg > —u" on wh\fyl’h.

The two last evaluations can be combined into the inequality
| <wi +ws on wp\ i

After taking maximum in the right-hand side over [0, 1] x [0, 1] we come to
the evaluation (5.4). O

Theorem 1 conveys stability of the problem (4.12) with respect to the
boundary values and right-hand side, and, besides that, from it naturally
follows unique solvability, since corresponding to it uniform system admits
only zero solution.
Lemma 1. If the conditions (1.3) and (5.3) are satisfied, then there exists a
constant cs independent from h and domain (2, such that the value c3 Sh(zij)
in irregular node z;; € wiT majorizes the modules of all non-zero coefficients
of the grid equation (4.12) corresponding to this node.
Proof. Let consider in details only one variant, for instance, the equation
(4.5) in the node z;; € 7{ . Computation of §*(z;;) with the account of
(1.3) and (3.2) gives the evaluation

1 6
h ii) — 37 — > . 5.17
For any 6, € (0,1] we have
1 1
Sh(zi7) > wE > o (5.18)
From this and (5.3) we obtain
2 . 2
gS (Zij) Z W Z d(zij). (5.19)

Except that, from (5.18) follow the inequalities

3 _3(1-6,)
> > .
= 5,82 = 5,R2

3Sh(zl~j)
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By summation of the three last inequalities (the first with the factor 4), we
obtain
37 3(1-4y)
5 d,h? -
Thus, the expression in the left-hand side majorizes the positive diagonal
coefficient. It is easy to verify that it majorizes the modules of the other
four coefficients of the equation (4.5).

So, the statement of the lemma, is proved for the nodes fyi 5, With constant
37/5. Similarly to the reasonings in (5.17) — (5.20), the existence of such
constants for other kinds of irregular nodes can be proved. Denoting the
maximal of them by ¢z, we complete the proof of the Lemma. O
Corollary 1. Looking through the equations (4.5) — (4.8), (4.10) and (4.11)
one can make sure that each of them contains a coefficient with absolute
value not less than 1/h? (in (4.7), (4.8), (4.10) and (4.11) that is diagonal
coefficient). Therefore from Lemma 1 it follows that

1
C3 h?

4
S (zi5) > w2 T d(zij) + (5.20)

Sh(zij) > for Rij € w}'f. (5.21)

Theorem 37. Let u,u” be the solutions of the problems (1.1) — (1.2) and
(4.12), respectively, and the conditions (1.3), (1.4), (5.3) be satisfied. Then

s = 0 g, < OB (5.22)
where constant C is independent of h.

Proof. Let show that the solution u” can be represented in the form:

uP = u + htph on wi \%h (5.23)
uh = u+ Rwor + A" on  (wor Uwio) \ Vi, (5.24)
u? = u+ htwgy + h2p" on  wyo \712’,1, (5.25)
(5.26)
where the functions
1 1 'y B'u
— S, weo=—aop, p= e+ oo 5.27

do not depend on h, and the remainder term p” is limited in the following

way:
dl <. (5.28)

I 2 —_
ooywh\'?'l,h

2
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The proof of the representations (5.23) — (5.27) is obtained by complication
of proof of the Theorem 4 from the work [11]. Indeed, on the basis of the
computations given there one can obtain equalities in regular nodes wj,

Arph =Mt = ¢ on wp,, (5.29)
Ahph = Lhph — LPph = €% on W}, (5.30)

with a grid function
|€" <es on wi. (5.31)

Let consider in details the situation in irregular nodes after the example
of the grid equation (4.5) in the node z; € ’Yih- Substitute the expansions
(5.23) — (5.25) into the expression L"u"(z;;) and for the function u perform
the expansion into Taylor series with respect to z;; with the remainder term
of the order h'. In the node z; j+1 lying outside {2 the value of u®(z; j11) is
determined as (one-dimensional) Taylor series with respect to s;; up to the
derivative 8%u/8y* inclusive. Then for the function u interpolation formula
(3.2) with remainder term (3.3) and multiplied by 1/h? is used. As a result,
we obtain the equality

AMu(ziz) = fM(zi5) + h*((235) (5.32)

with the evaluation of the remainder term
¢ (i) < ce- (5.33)
Consider terms of the form h*wg; and h*wgo in the expansions (5.24), (5.25).

On the basis of (5.27) they are evaluated as

h4
ht max {lwool, lwor [} < 514l - (5.34)

On the basis of Lemma 1, under any possible arrangement of these terms
on the stencil of the equation (4.5) (see Fig. 3a) the result n(z;)) of lin-
ear combination of these terms with corresponding coefficients of the grid
equation (4.5) can be evaluated as

h4
In(zi)| < 5635h(zij)ﬁl|ﬂ||oo,§- (5.35)

Thus, after substitution of (5.23) — (5.25) into the expressions APu"(z;;)
reduce a part of terms due to (4.12) and (5.32), divide the others terms by
h* and group together the terms with ((z;;) and n(z;;) into one remainder
term &%

Al (zi5) = E(2i5),  zij € M- (5.36)
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Due to (5.33), (5.35), and Corollary 1 we have the evaluation
€% (2i5)] < B2[¢(2i) | + b~ n(zi5)| < esles +5/12 ||ull o0 5)S" (245)- (5.37)
Similar expressions are obtained in other kinds of irregular nodes. Finally,
Alph = ¢t on Wi (5.38)
with a grid function &” for which the following evaluation is valid:
18" (2i5)] < ezS™(2i),  2i5 € W}, (5.39)

where ¢y = c3(cs + 7/12 ||| oo 13)-

In the end we arrive at the system of equations (5.29), (5.30), and (5.38),
which uniquely determines the grid function p”. On the basis of Theorem 1
we obtain the evaluation

16"l oo@\nz,, < %”fh”oo,w;; +11€" /5™l oo i (5.40)
From it, due to (5.31) and (5.39), (5.28) follows with constant
¢y =11/48 ¢5 + c7.
The final affirmation of (5.22) follows from (5.23) — (5.25) with use of

(5.28) and (5.34). O

6 Numerical examples

Ag in [11], let apply the constructed method to two problems of the form
(1.1) — (1.2) with improved smoothness and with oscillating solution. Let the
domain {2 be bounded by a circumference I" with center in point (0.5,0.5)
and radius 0.49.
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The problem I has the form
—Au = 2cos (%) y(1 - y) cos (%y)
+(1-2)sin (”2 )ﬂ’y(l — y)cos (”2—’/)
s () u - (2)
+ xl—x )cos (57) my(1 - y)cos ()
+ 20(1 - 2) cos () cos () M
+2(1 =) cos (T0) (1= y)sin (5 ) =
)

z(1—=z) cos( ysm( ) in £,

u=g on I

with a function g being equal on I" to the exact solution
u(z,y) = z(1 — z) cos (%) y(1 —y) cos (%) .
The problem II has the form

—Au= —32¢,(1 — z)y(1 — y) + 512s,2(1 — z2)y(1 — y)
+32¢,2y(1 —y) + 28,y(1 —y) — 32¢,z(1 —2)(1 —y) (1)
+32¢,z(1 — z)y + 25,z(1 —x) in L2,
u=g9g on I

where ¢, = cos(16x + 16y) and s, = sin(16x + 16y). The function g on I" is
equal to the exact solution as well u(z, y) = sin(16z + 16y)z(1 — z)y(1 — y).
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In Fig. 11 a quarter of the domain (2 is shown for N = 44.

-0

237

Fig. 11: Scheme of possible arrangement of kinds of nodes on the grid wp;

Here new symbols are introduced:

+ — zij €wp 13 + 2 EWhoi 4 — 2ij €Y
oz €M O— 2 €Yp @ — Zij € Vaps
O — 2 EVRZUYE A — 2 €34 O — 2ij €73k
& — % €Yoy
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The data of the numerical experiment are presented in Table 1.
Table 1: Error of approximate solutions
of the problem with improved smoothness.

N |method of the fourth order[method of the second order
¥ v, ¥ Yy

10 | 5.8419—04 | 1.68,9—04 | 4.3910—04 | 2.0419—-04
14 | 6.32190 — 05| 1.5010—05 | 1.84;9 — 04 | 8.401¢9 — 05
18 |4.24,— 05| 9.2210—06 | 1.0710 — 04 | 4.79:9 — 05
20 [1.7210—05]| 6.0910 — 06 | 8.64;5 — 05| 3.86:9 — 05
28 [4.3210—06| 1.3110— 06 | 4.37150— 05| 1.95,9 — 05
30 | 2.1810—06| 4.7919 — 07 | 3.8010—05| 1.7019 — 05
32 [431,0—-06| 9.11,9—07 | 3.3510—05| 1.49;9 — 05
36 | 1.5510—06| 3.8519—07 | 2.6410—05| 1.18;9 — 05
40 [1.0210—06 | 27710 —07 | 2.1310 — 05| 9.48;9 — 06
56 | 2.5219— 07| 5.2910 — 08 | 1.081p — 05| 4.82:9 — 06
60 | 2.8810—07| 4.8719—08 [ 9.1710—06| 4.0719 — 06
64 |2.59:0—07| 429,90 —08 | 7.0910 — 06 | 3.1019 — 06
A !pla !p2

10—8 |

1 S

10 . ' 3

10—6 | -

1075 _

0t - %

1073 )

10—2 -

0t

1 = —— >

106 10 14 18 22 26 30 34 38 42 46 50 54 58 62

N

Fig. 12: Error of approximate solutions of the problems I and II.

In Fig. 12 the results of numerical experiments are shown in logarithmic
scale over the Y —axis. The numbers 1, 4 and 7 mark mean square error

1/2
>

zewh\'yf’h

(u(z) — u"(2))

U =|lu— Uh||2,wh\'yf,h =
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for the problems I and II, solved by the proposed in the present paper
method, and for the problem I, solved by a standard method with the second
order of accuracy, respectively [2], [6]. The numbers 3, 6 and 9 mark uniform
errors

U, = ”u - uh”oo,wh\'yf’h

for the problems I and II, solved by the method proposed in the present
paper, and for the problem I, solved by a standard method with the second
order of accuracy, respectively. The numbers 2, 5 and 8 mark diagrams of
the curves 6 = ¢ h?*, 6 = coh* and & = h2, respectively.
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Experimental analysis of fourth-order schemes
for Poisson’s equation

Bykova E.G., Riide U., Shaidurov V.V

Introduction

This is not the first attempt to perform a comparison of numerical schemes
for Poisson’s equation [3]. However, during the last few years some new
approach had been developed which was not studied experimentally in a
comparison. Here, we consider several finite-difference schemes for Poisson’s
equation with Dirichlet boundary condition and evaluate them for three dif-
ferent types of solution: smooth, oscillatory and exponentially growing. The
results are evaluated in the discrete Ly—, Lo~ and energy norms. In all
computations, the problem is discretized on uniform square mesh (divided
into triangles, if necessary). Of course, a uniform mesh does not permit to
demonstrate the ability of some methods to adapt for an arbitrary (trian-
gle or quadrangle) meshes. Moreover, different methods on a uniform mesh
may result in same discrete algebraic systems if they are combined with ap-
propriate quadrature rules for the right-hand side. Nevertheless, even these
simple comparisons yield interesting insights.

1 Formulation of the differential problems

Let 2 = (0,1) x (0,1) be the unit square with the boundary I". Consider
the Dirichlet problem

—Au=f in £ @)
u=0 on I. (IT)
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We shall treat three examples with known exact solution. (The first and
second examples are taken from [3]).
Ezxample 1. Let

f(@,y) = filz,y) = cacy(2y(1 —y) + 22(1 - 2) + 7°2(1 - 2)y(1 - 1)/2)
+5z0y7(1 —22)y(1 — y) + cpsym(1 — 2y)z(1 — =) (III)

where

sy = sin(nz/2), ¢y = cos(wz/2),

sy = sin(wy/2), ¢y = cos(my/2).

This right-hand side gives rise to a comparatively smooth solution of prob-
lem (I)—(II):

u(z,y) := ui(2,y) = 2(1 — z) cos(mz/2)y(1 — y) cos(my/2). (Iv)
Ezxample 2. Let

f(@,y) = fa@,y) =—32c(1-22)y(1 —y)
+512s2(1 — 2)y(1 —y) + 2sy(1 — y) V)
—32cz(1 — z)(1 — 2y) + 2sz(1 — z)

where
s = sin(16z + 16y), ¢ = cos(16z + 16y).

With this right-hand side we obtain an oscillatory solution of problem (I)-
(II):
u(z,y) := ue(z,y) = sin(16x + 16y)z(1 — z)y(1 — y). (VD)

Ezample 3. Let

f(z,y) = fs(z,y) = (1 -2)y(y +3)
+z(z + 3)y(1 — y))e®Tv. (VII)

For this right-hand side we obtain an exponentially growing but compara-
tively smooth solution of problem (I)—(II):

u(@,y) = us(@,y) = a(1 - 2)y(1 - y)e”*. (VIIL)



242 Bykova E.G., Riide U., Shaidurov V.V.
2 Tested methods

Let
On =A{zij : zij = (®i,y;); & =ih, i=0,1,...,n; y; = jh, j =0,1,...,n}
be uniform square grid with mesh-size h = 1/n. Let also
0n ={zij:2ij € f)hﬂ()}
and
L ={zij 1255 € Oy ﬂF}

To simplify the notation, we shall use the shortening

vij = v(2i5) = v(%i,Y5)-

2.1 Five-point scheme and Richardson extrapolation

Here we use standard scheme
4 4 1, 1, 1 4 1 4
palig T pativlg T paticlg T paliia T a1 = fin (@)
,7j=1,...,n—-1, ie, ZijG.Qh;
uly =0 if 2 € Ih. (I1)

Of course, the solution of this problem has only second order of accuracy.
However, using Richardson extrapolation the accuracy can be improved. For
this purpose we assume n to be even and solve one more auxiliary problem
()—(IT) with mesh-size 2h. Then we take both solutions u” and u?* and
form a linear combination

_ 4

U (2) - 1u2h(z) Vz € Oap,. (I11)

uRich (z) 3

According to the theory, this combination has fourth order of accuracy in
the discrete Loo-norm [4].
2.2 Nonhomogeneous Bykova-Shaidurov scheme

This discretization uses different stencils at different grid points [5], [6]. Let
again n be even. In the nodes (%, 7) with both ¢ and j even, this scheme has



Experimental Analysis of Fourth-Order Schemes 243

the form
3 L) Lon L) L n
Rzt T pzter T pati-1g T pz¥ige T patii-1
1 h 1 h 1 h 1 h
ot T gaticeg t gatie T gatis2=0 (V)

i,j=24,...,n—2.

At the rest nodes of 25, we use equations (I) and, finally, on the boundary
nodes I, we use equation (II). In [5] the fourth order of accuracy is proved
in discrete Ly,-norm.

2.3 Khoromskij combination

The method is similar to Richardson extrapolation and uses solutions of
two difference schemes [7]. But this time we perform the computation on
the same grid and n is not necessarily even. The first scheme coincides with
(I)—(IT). The second one uses the oblique 5-point cross:

L h —h = 7 7l
W(‘lui,j — Uiy, 5+1 — Ui—1,5-1 — Y1541 — ui+1,j—1) = fij, (V)

,7=1,...,n—1;

af; =0 if 2 € Iy (VI)
Then we form the linear combination
Khor 2 h 1 ~h h2 M
u (2) = U (z) + 30 (z) — Ef(z) Vz € (2. (VID)

According to the proof in [7], this combination has fourth order of accuracy
in discrete Ly,-norm.

2.4 Nine-point box scheme

This scheme uses only one grid and is homogeneous in the sense that it
exploits only one 9-point stencil over all inner nodes of the grid [1], [2]. We
apply it in the following form:

4ul

1
—(QOqu —dul - 4uf_1’j — 4yl i1

6h2 i+1,j G+l T

h2
—U?+1,j+1 - U?—1,j—1 - U?—1,j+1 - U?+1,j—1) = fij+ E(Af)i,ja (VIII)

,j=1,...,n—1.
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For the boundary nodes I}, we again use equations (II). Note, that right-
hand side in (VIII) is often used in the form

2 1 1 1 1
gfid + gfivii + Gfiovg + Gfigm + 5 fig-1

The difference between them is of fourth order of smallness and therefore
they both give the same fourth order of accuracy for the difference solution
in the discrete Lo-norm [1], [2]. From practical point of view, the last value
is preferable since does not involve an analytical modification of the right-
hand side. But it contains difference differentiation in an implicit form. In
order to eliminate the additional truncation error, we have used (VIII) with
the exact analytical differentiation in all our problems.

3 Two ways to compare the computational cost

The traditional basis for a comparison is simply to use the number of un-
knowns as a measure of complexity. So we simply use the same grids with
number of inner nodes (n — 1)2 for all example problems. Therefore, we
performed the computation for n = 2,4, 8,16, 32, 64 and display the results
for Example 1 in fig. 1 (top), 2 (top), and 3 (top) which correspond to the
evaluated discrete energy-, Loo-, and Lo-norms, respectively. The figures
plot the error versus the number of mesh points. In each figure

line 1 (marked by asterisks) demonstrates Richardson extrapolation,

line 2 (marked by dots) corresponds to ~ Bykova-Shaidurov scheme,

line 3 (marked by crosses) demonstrates Khoromskij combination,

line 4 (marked by circles) corresponds to nine-point box scheme.

The second comparison is based on the number of non-zero coefficients
of the system matrices. This number is the amount of input data for the
iterative process and should be useful for the evaluation of the complexity
of smoother iterations (s.f. [8]). This point of view changes the situation,
since the different methods on the same (n — 1) x (n — 1) grid result in the
following number of coefficients:
in Richardson extrapolation 6.25n2,
in Shaidurov-Bykova scheme 6n2,
in Khoromskij combination 10n2,
in nine-point box scheme  9n2.

The result for this approach are displayed for Example 1 in figures 1
(bottom), 2 (bottom), and 3 (bottom) for the discrete energy-, Loo-, and
Lo-norms, respectively.

From the figures 1, 2, 3 one can see that the difference between first
and second comparison criteria of is not significant for the relative ranking
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Fig. 1. Energy-norm of error in Example 1.



246 Bykova E.G., Riide U., Shaidurov V.V.

N —

—_— 3

107* 4
107°
1078
1077
1078

10* 102 10°
First criteria.
1
_3 ——
10 9

104

1075

1077

1078

/.

10? 10° 10*
Second criteria.

Fig. 2. Lo —norm of error in Example 1.
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Fig. 3. Ly—norm of error in Example 1.
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Fig. 4. Energy-norm of error for Examles 2 and 3. Second criterium.
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Fig. 5. Loo—norm of error for Examples 2 and 3. Second criterium.
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Fig. 6. Ly—norm of error for Examples 2 and 3. Second criterium.
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of the methods. Therefore in Example 2 and 3 we present only the results
for the second type of comparison where the complexity is evaluated with
respect to number of nonzero coefficients of the matrices. In figures 4, 5, and
6 we show graphs of errors for both examples in the discrete energy norm,
Lo~ and Lo-norms, respectively. In each figure the graphs for the L,- and
Lo-norms are asymptotically lines with a slope that clearly indicates an
O(h*)-behavior.

Summarizing, in Examples 1 and 3, where the solution is smooth,
Richardson extrapolation is most effective in all norms among the tested
methods. For the oscillatitive solution of Example 2, the nine-point box
scheme is most efficient, again in all three norms.
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