ИВМ СО РАН Поиск 
Семинары Института
институт
структура
сотрудники
конференции
семинары
ученый совет
совет молодых ученых
техническая база
история
фотогалерея

исследования
разработки
экспедиции
эл. архив
годовые отчеты

ссылки
библиотека
документы
адреса и телефоны
 

Математические модели и методы интегрирования

2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 Все ]

Заседание

пятница, 9 ноября 2018 г., 17:00, ИВМ СО РАН, ауд. 434

Д. А. Нестеров
Контроль теплового режима бортовой радиоэлектронной аппаратуры

Заседание

четверг, 1 ноября 2018 г., 18:00, ИВМ СО РАН, ауд. 434

Ю. В. Шанько
Об интегрировании уравнения Шредингера

Заседание

четверг, 18 октября 2018 г., 18:00, ИВМ СО РАН, ауд. 434

А. В. Шмидт
К вопросу о вырождении безымпульсных турбулентных следов

Заседание

четверг, 4 октября 2018 г., 18:00, ИВМ СО РАН, ауд. 434

О. В. Капцов
Преобразования линейных дифференциальных уравнений

Заседание

среда, 16 мая 2018 г., 18:00, ИВМ СО РАН, ауд. 434

С. П. Царев (СФУ)
Коммутирующие элементы в теле Оре отношений линейных обыкновенных дифференциальных операторов (продолжение)

Мы рассматриваем обобщение известной теории коммутирующих линейных обыкновенных дифференциальных операторов на псевдодифференциальный случай. Естественными алгебраическими объектами для подобной теории являются формальные отношения линейных обыкновенных дифференциальных операторов (тело Оре) либо ряды типа Лорана по убывающим степеням оператора d/dx (тело И. Шура). Излагаются классические результаты Шура и их применения к рассматриваемой в докладе задаче описания коммутирующих элементов в этих двух телах.

Заседание

среда, 25 апреля 2018 г., 18:00, ИВМ СО РАН, ауд. 434

А. В. Шмидт
Обзор двух работ по автомодельным течениям дальнего турбулентного следа

Заседание

среда, 11 апреля 2018 г., 18:00, ИВМ СО РАН, ауд. 434

С. П. Царев (СФУ)
Коммутирующие элементы в теле Оре отношений линейных обыкновенных дифференциальных операторов

Мы рассматриваем обобщение известной теории коммутирующих линейных обыкновенных дифференциальных операторов на псевдодифференциальный случай. Естественными алгебраическими объектами для подобной теории являются формальные отношения линейных обыкновенных дифференциальных операторов (тело Оре) либо ряды типа Лорана по убывающим степеням оператора d/dx (тело И. Шура). Излагаются классические результаты Шура и их применения к рассматриваемой в докладе задаче описания коммутирующих элементов в этих двух телах, а также их связь с задачей описания почти коммутирующих троек линейных операторов с частными производными от двух переменных.

Новые результаты автора доклада включают:
— полное алгебраическое доказательство аналога теоремы Берчнала — Чаунди для почти коммутирующих троек линейных операторов с частными производными от двух переменных;
— примеры коммутирующих элементов тела Оре, для которых нет полиномиальных соотношений.

Заседание

среда, 28 марта 2018 г., 18:00, ИВМ СО РАН, ауд. 434

А. Н. Остыловский (СФУ)
О гомоморфизме одной алгебраической системы

Заседание

среда, 21 февраля 2018 г., 17:30, ИВМ СО РАН, ауд. 434

О. В. Капцов
Типы волн уравнения Буссинеска

Заседание

среда, 14 февраля 2018 г., 17:30, ИВМ СО РАН, ауд. 434

О. В. Капцов
Задача об аналитической итерации

Заседание по материалам кандидатской диссертации

понедельник, 15 января 2018 г., 18:00, ИВМ СО РАН, ауд. 434

А. Н. Полковников (СФУ)
О спектральных свойствах операторов, порожденных некоэрцитивными эрмитовыми формами

Мы рассматриваем операторные уравнения, порожденные некоэрцитивными эрмитовыми формами, соответствующими смешанным краевым задачам с граничными условиями робеновского типа для сильно эллиптических дифференциальных операторов в произвольных областях с липшицевой границей. А именно, мы строим специальные пространства соболевского типа, порожденые этими формами и доказываем теорему вложения таких пространств в шкалу пространств Соболева — Слободецкого с положительными показателями гладкости. Используя теорему вложения, мы доказываем фредгольмовость рассматриваемых уравнений в построенных пространствах. Отметим, что в отличие от классического (коэрцитивного) случая, происходит потеря гладкости решения вблизи границы. Также теорема вложения гарантирует полноту корневых функций соответствующих операторов в данных пространствах и дает информацию о расположении соответствующих собственных чисел.

2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 Все ]