ИВМ СО РАН ПоискEnglish
список сотрудников по алфавиту
о сотруднике
curriculum vitae


адреса и телефоны


Dr. Valery Denisenko
Curriculum vitae


First nameValery
Date of birthApril 07, 1951
E-mailНаписать письмо
InternetPersonal page
Home addressAcademgorodok 24, ap. 34, 660036, Krasnoyarsk, Russia
Phone(007–391) 2495741
Fax(007–391) 2907476
Home phone(007–391) 2495711
Affiliation Institute of Computational Modelling
Russian Academy of Sciences Siberian Branch
ICM RAS SB, Academgorodok, 660036, Krasnoyarsk, Russia
PositionLeading researcher


1972M.S. of Physics & Applied Mathematics, Physical Department, Novosibirsk State University.
1979Candidate of Sciences degree, Institute of Physics RAS SB, Krasnoyarsk (corresponds to the Ph.D. degree).
1992Awarded the Title of Senior Researcher in Mathematical Modelling.
1997Doctor of Sciences degree, Computing Centre RAS SB, Novosibirsk (the next academic degree). The thesis was «Mathematical simulation of global distributions of electric field and current in the Earth's ionosphere».
In 1997 I have defended my thesis for the degree Doctor of Physical and Mathematical Sciences in physics and mathematics. The subject of the thesis was «The mathematical simulations of global distributions of electric field and current in the Earth's ionosphere». It was defended at the Council on Physics of Atmosphere and Hydrosphere at the Computing Centre RAS SB in Novosibirsk. The head of the council was Prof. Gennady A. Mikhailov, RAS correspondent member. Prof. Vladislav V. Pukhnachev, RAS correspondent member (Lavrentjev Institute of Hydrodynamics RAS SB), Prof. Edward I. Ginzburg (Novosibirsk State Technical University) and Prof. Victor I. Kuzin (Computing Centre RAS SB) were my official opponents. The expert institution was the Institute of Solar-Terrestrial Physics RAS SB, Irkutsk.


1972–1975Postgraduate, Computing Centre RAS SB, Novosibirsk. I participated in mathematical simulations of elastic bodies with Maxwell viscosity.
1975–1983Researcher at the Computing Centre RAS SB, Krasnoyarsk. I participated in mathematical simulations of electric fields and currents in the Earth's ionosphere.
1983–1985Senior researcher at the same institute. I created numerical methods and analysed magnetic field perturbations caused by the defects in the superconducting solenoid.
1985–2005Head of the Laboratory of Mathematical Models for Near-Space, Institute of Computational Modelling RAS SB (before 1997 the institute had the name Computing Centre), Krasnoyarsk.
2005–2008Principal researcher at the same institute.
2008-presentLeading researcher at the same institute.
2002-presentAlso half-time professor of physics in Siberian Federal University.
I am in charge of mathematical simulations of large scale physical processes in the Earth's magnetosphere. I develop variational and numerical methods for elliptical boundary value problems.
A valuable part of my geophysical researches was conducted in collaboration with Austrian colleagues during about ten academic visits to the Space Research Institute of the Austrian Academy of Sciences in Graz.


2007–2009Mathematical Simulation of the Influence of Ionospheric Plasma Outflow on Formation of the Earth's Magnetospheric Tail. Russian Foundation for Basic Research, Moscow.
2005–2008Large scale electric field generation in the Earth's magnetosphere. Program 16 of basic research «Changes of environment and climate: natural catastrophes, part 3, Solar activity and physical processes in the Sun-Earth system.» Russian Academy of Sciences, Moscow.
2004–2008Mathematical Model of the Geomagnetic Field Perturbation by the Currents of Magnetospheric MHD Generators. Program 2.16 of basic research «Plasma processes in the Solar system.» Department of Physical Sciences of the Russian Academy of Sciences, Moscow.
2004–2006Mathematical Modeling of Magnetospheric MHD Generators. Russian Foundation for Basic Research, Moscow.
2004Software for Magnetic Field in Aluminium Electrolyser Calculation. RUSAL Engineering Technological Centre, Krasnoyarsk.
2001–2003Mathematical Model of the Magnetospheric Magnetic Field. Russian Foundation for Basic Research, Moscow.
2001Mathematical Model of the Geomagnetic Field Variations Due to Magnetospheric Currents. Krasnoyarsk Territory Science Foundation.
1998–2000Mathematical Simulations of the Magnetospheric Generators of the Ionospheric Electric Field. Russian Foundation for Basic Research, Moscow.
1995–1997Mathematical Simulations of the Electric Field Penetration from the Solar Wind to the Earth's Ionosphere. Russian Foundation for Basic Research, Moscow.
1994–1995A Model of the Electric Fields Generation at the Magnetospheric Boundary, Their Transfer through the Magnetosphere with Electric Energy Dissipation in the Ionosphere of the Earth. International Science Foundation, New York — Moscow.
1993–1994Thermodynamical and variational principles for transfer processes in gyrotropic media. Krasnoyarsk Territory Science Foundation.
1985–1987Magnetic Fields of Superconducting Solenoids. Design company «Horizon», Moscow.
I also participated in many projects in which I was not PI.


1972–1973Teacher of physics in Physical and Mathematical School at Novosibirsk State University.
1974–1975Assistant professor at Novosibirsk State University.
2002-presentHalf time professor of physics at the Chair of Mathematical Simulation and Control of the Institute of Mathematics in the Siberian Federal University.
I was the supervisor of Sergey S. Zamay and Oleg E. Yakubailik. They had obtained their Ph.D. degrees in 1989 and 1998 respectively.


I have more than 150 publications, 38 of them are papers in distinguished Russian and international professional journals, 3 of them are monographs and a chapter in Encyclopaedia. I contributed in about 50 Russian and international conferences.

I have made considerable advances in three scientific areas: mathematical simulations in geophysics, mathematics and thermodynamics.

In collaboration with Dr. S. Zamay we have invented the global model of electric field and current in the Earth's ionosphere for disturbed and quite geomagnetic periods. No other model exists that correctly includes low latitude ionosphere in a model of the ionospherical global conductor because the mathematical problem is hard to solve. We have overcome the difficulties by using the new mathematical formulation of the same physical problem.

These formulations, proper proofs and numerical algorithms form my second achievement that belongs to mathematics. It is the variational method for transfer processes with nonsymmetrical coefficients. I was recognised in «The list of the most significant achievements of the Russian Academy of Sciences 1994» (published annually by RAS) for creating the unique numerical method for these two-dimensional elliptic boundary value problems.

My third achievement is connected with the second one. It is the most fundamental step forward among all my results. The main principle of nonequilibrium thermodynamics, which is the principle of minimal entropy production, is generalized for transfer processes with nonsymmetrical coefficients and for processes in moving medium, such as convection-diffusion or heat transfer.

In 1999 I was appointed to the Research Board of Advisors of the American Biographical Institute.

In 2000–2003 I was awarded with the Federal Scholarship for Outstanding Russian Scientists.

The main result of the last few years is creation of the multigrid software that permits to solve 3-D boundary value problems for elliptical equations, which simulate magnetic and electric fields. Nonlinear problems for magnetic field in aluminium electrolysers with ferromagnetic bodies are also solved.



The main advantages of my participation in any research are due to my education, skills and experience. They permit me to choose an adequate mathematical model for a physical process of interest, to develop such a model if necessary or to reduce it to a form that is solvable in frame of existing numerical methods. I can also design proper algorithms and create proper software in Fortran language. I like collective work and large important projects in fundamental science as well as applied ones.


The references and letters of recommendation can be obtained from:
  • Academician, Prof. Sergey K. Godunov. Sobolev Institute of Mathematics, 630090, Novosibirsk, Russia. (007–383) 3634619. e-mail
  • Corresponding member of RAS, Prof. Vladimir V. Shidurov. Director of the Institute of Computational Modelling, 660036, Krasnoyarsk, Russia. (007–391)2432756. e-mail
  • Prof. Alexander N. Gorban. Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK, +44 (0) 116 223 1433. e-mail


Creation of mathematical models of the atmospheric electric field.

Mathematical simulation of the magnetospheric electric field generation with electric energy dissipation in the ionosphere.

Mathematical simulations of electric fields and currents in the Earth's ionosphere with stress on low latitude phenomena.

Creation of variational and numerical methods for nonsymmetrical boundary value problems of elliptical type which simulate transfer processes in gyrotropic or moving medium.

Upgrading of multigrid methods for systems of partial differential equations of elliptical type.




  1. Denisenko V. V., Erkaev N. V., Kitaev A. V. and Matveenkov I. T.
    Mathematical simulations of magnetospheric processes. Novosibirsk, Publ. House «Nauka», 197 p., 1992. [in Russian]

  2. Denisenko V. V.
    Energy methods for elliptic equations with asymmetric coefficients [in Russian]. Publ. house of the Russian Academy of Sciences Siberian Branch, Novosibirsk, 204 p., 1995.

  3. Denisenko V. V.
    Solution of Electromagnetism Theory Problems. Chapter in the Encyclopedia of Life Support Systems. http://www.eolss.net. 2005.

  4. Denisenko V. V.
    Solution of the problems in thermodynamics and molecular physics: handbook for students. Krasnoyarsk State University. Krasnoyarsk. 124 p. 2006. [in Russian]

Publications in journals:

  1. Godunov S. K., Denisenko V. V., Kozin N. S. and Kuzmina N. K.
    The application of viscous-elastic model for calculation of homogeneous deformations and for specification of Maxwell viscosity formulas interpolation. J. of Applied Mechanics and Technical Phys. No. 5, P.162–167, 1975. (*)

  2. Denisenko V. V., Pivovarov V. G.
    Currents in high-latitude ionosphere, that are generated by asymmetric ring current variations. Geomagnetism and Aeronomy. V. 16. No. 1. P.183–184,1976. (*)

  3. Denisenko V. V. and Pivovarov V. G.
    Calculations of current systems in polar ionosphere. Geomagnetism and Aeronomy. V. 17, No. 1, P. 44-49, 1977. (*)

  4. Denisenko V. V., Kotov V. A., Romanov V. A., Sokolov V. S.
    Potential models of the unipolar sunspot magnetic field. Solar Physics. V. 81, P.217–229, 1982.

  5. Denisenko V. V.
    Energetic method of estimations of electroconductivity of conductors with Hall-effect [in Russian]. Communications of Academy of Sciences of USSR, Energetics and Transport. V. 12, No. 5, P. 175–180, 1987.

  6. Denisenko V. V. and Zamay S. S.
    The role of high-latitude sources in formation of equatorial electrojets. Geomagnetism and Aeronomy. V. 27, No. 5, P. 840–842, 1987. (*)

  7. Denisenko V. V.
    The distortion of near-axis magnetic field as a result of small deformation of solenoid geometry. Electricity. No. 2, P. 82-85, 1989. [in Russian]

  8. Denisenko V. V.
    Variation methods for elliptical boundary value problems, that describe transfer-processes with non-symmetrical matrix coefficients. J. of Applied Mechanics and Technical Physics. No. 3, P. 69-75, 1989. (*)

  9. Denisenko V.V and Zamay S. S.
    Mathematical simulations of global electric fields and currents in ionosphere. Geomagnetism and Aeronomy. V. 31, No. 3, P. 539–542, 1991. (*)

  10. Denisenko V. V. and Zamay S. S.
    Electric field in the equatorial ionosphere. Planetary and Space Science. V. 40, No. 7, P. 941–952, 1992.

  11. Denisenko V. V., Zamay S. S., Kitaev A. V., Matveenkov I. T. and Pivovarov V. G.
    . The system of ionospheric currents, that is produced by generator of boundary layer. Geomagnetism and Aeronomy. V. 32, No. 3, P. 142–145, 1992. (*)

  12. Denisenko V. V., Zamay S. S., Pushkarev V. A., Shaparev N. Ya., Yakubailik O. E.
    Computer system for air pollution forecast and emergency of possible accidents at industrial and transport objects estimation. // Problems of safety in extraordinary events. V. 9. P. 101–111. 1993.

  13. Erkaev N. V., Mezentsev A. V., Denisenko V. V. Zamay S. S. and Troshichev O. A.
    Electric field generation at the magnetospheric boundary for northward IMF. J. Atmospheric and Terrestrial Physics. V. 56, P. 153–166, 1994.

  14. Denisenko V. V.
    A boundary value problem for an elliptic equation in two variables with asymmetric tensor coefficients. Siberian Mathematical Journal. V. 35, No. 3, P. 495–505, 1994.

  15. Denisenko V. V.
    Multigrid method for solution of two-dimensional elliptic boundary value problems, that describe transfer processes with nonsymmetric tensor coefficient. Mathematical Modelling. V. 6, No. 2, P.34-46, 1994. [in Russian]

  16. Denisenko V. V. and Kitaev A. V.
    A model of electric fields generated in the system magnetopause — plasma sheet — ionosphere. Geomagnetism and Aeronomy. V. 36, No. 5, P. 638–644, 1996. (*)

  17. Denisenko V. V.
    The energy method for convection-diffusion problems. J. of Applied Mechanics and Technical Physics. V. 38, No. 2, P. 197–203, 1997.

  18. Denisenko V. V. and Zamay S. S.
    Effects of Substorm Wedge Field-Aligned Currents on Electric-Field Disturbances over the Geomagnetic Equator. Geomagnetism and Aeronomy. V. 37, No.1, P. 59-66, 1997. (*)

  19. Denisenko V. V.
    The energy method for three dimensional elliptical equations with asymmetric tensor coefficients. Siberian Mathematical Journal. V. 38, No. 6, P. 1099–1111, 1997.

  20. Farrugia C. J., Gratton F. T., Bender L., Biernat H. K., Erkaev N. V., Denisenko V. V., Torbert R. B., Quinn J. M.
    Charts of joint Kelvin-Helmholtz and Rayleigh-Taylor instability growth rates at the dayside magnetopause, with and without boundary layer, for strongly northward interplanetary magnetic field. J. Geophys. Res. V. 103, P. 6703–6727, 1998.

  21. Denisenko V. V.
    Energy method for three-dimensional problems of transfer in moving media. Russian Journal of Numerical Analysis and Mathematical Modelling. V. 14, No. 1, P. 37-58, 1999.

  22. Denisenko V. V., Kitaev A. V.
    A model of ionospheric electric fields generated by the flow in the plasma sheet. Geomagnetism and Aeronomy. V. 40, No. 1, P. 44-49, 2000. (*)

  23. Denisenko V. V.
    Energy method in problems of transfer in media moving in multiply connected domains. Russian Journal of Numerical Analysis and Mathematical Modelling. V. 15, No. 2, P. 127–143, 2000.

  24. Denissenko V. V., Zamay S. S.
    Variation of effective conductivity due to motion in the ionosphere. Geomagnetism and Aeronomy. V. 41, No. 1, P. 91-95. 2001. (*)

  25. Denisenko V. V.
    Symmetrical operators for problems of transfer in three-dimensional moving media. Siberian Journal of Industrial Mathematics. V. 4, No. 7(1), P. 73-82, 2001. [in Russian]

  26. Denisenko V. V.
    A boundary value problem for an elliptic equations with asymmetric coefficients in a non-schlicht domain. Siberian Mathematical Journal. V. 43, No. 6, P. 1055–1068, 2002. Also on line: http://www.emis.de/journals/SMZ/2002/06/content6.htm

  27. Denisenko V. V., Zamay S. S., and Kitaev A. V.
    The Effect of Viscous Friction between the Solar Wind and Plasma Sheet on Electric Field Generation in the Magnetosphere. Geomagnetism and Aeronomy. V. 43. No. 6. P. 680–686. 2003.

  28. Denisenko V. V.
    Energy methods application for vector fields calculation. Journal of Computational Technologies. V. 9. No 4. P. 42-56. 2004. [in Russian]

  29. Denisenko V. V., Erkaev N. V.
    Mathematical modeling of the Earth's magnetosphere. Journal of Computational Technologies. V. 9. Special issue. P. 53-58. 2004. [in Russian]

  30. Denisenko V. V.
    Mathematical simulation of generation of electric field in the Earth's magnetosphere. Vestnik KrasGU. No 4. P. 66-74. 2006. [in Russian]

  31. Denisenko V. V., Bychkov V. V., and Pomozov E. V.
    Calculation of Atmospheric Electric Fields Penetrating from the Ionosphere. Solar-Terrestrial Physics. No. 12. V. 2. 2008. P. 281–283. [in Russian]

  32. Denisenko V. V., M. Y. Boudjada, M. Horn, E. V. Pomozov, H. K. Biernat, K. Schwingenschuh, H. Lammer, G. Prattes, and E. Cristea.
    Ionospheric conductivity effects on electrostatic field penetration into the ionosphere. Natural Hazards and Earth System Sciences Journal. V. 8. P. 1009–1017. 2008.

  33. Denisenko V. V., H. K. Biernat, A. V. Mezentsev, V. A. Shaidurov, and S. S. Zamay.
    Modification of conductivity due to acceleration of the ionospheric medium. Annales Geophysicae. V. 26. P. 2111–2130. 2008.

  34. Denisenko V. V., Erkaev N. V.
    Mathematical simulation of the magnetospheric events and their influence to the Earth's atmosphere. Journal of Computational Technologies. V. 14. No 6. P. 34-44. 2009. [in Russian]

  35. Denisenko V. V., Bychkov V. V., and Pomozov E. V.
    Calculation of Atmospheric Electric Fields Penetrating from the Ionosphere. Geomagnetism and Aeronomy. Vol. 49. No. 8. P. 1275–1277. 2009.

  36. Ampferer M., V. V. Denisenko, W. Hausleitner, S. Krauss, G. Stangl, M. Y. Boudjada, H. K. Biernat.
    Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer. // Annales Geophysicae. V. 28. N. 3. P. 779–787. 2010.

(*) There exist English versions of these Russian journals

Proceedings of the international conferences:

  1. Denisenko V. V., Erkaev N. V., Zamay S. S., Kitaev A,V., Matveenkov I. T., Mezentsev A. V. and Pivovarov V. G.
    Mathematical model of physical processes responsible for generation of magnetospheric electric fields and their penetration into the Earth's magnetosphere. Proceedings of the Cluster Workshop. Svalbard, Norway, ESA SP-330, P. 211–216, 1991.

  2. Denisenko V. V.
    The multigrid finite element variational method for the 2-D elliptic boundary value problems, that describe transfer processes with nonsymmetrical coefficients matrix. Advanced mathematics, computations and applications — Proceedings of the International Conference AMCA-95. Novosibirsk: NCC Publisher, P. 552–563, 1995.

  3. Denisenko V. V.
    The multilevel iteration method for 2-D problems, that simulate transfer processes with asymmetric coefficients matrix. Proceedings of the Conference on Algebraic Multilevel Iteration Methods with Applications. Nijmegen, The Netherlands, P. 117–125, 1996.

  4. Denisenko V. V.
    The energy method for boundary value problems of transfer in moving medium. Proceedings of the 4-th International Conference on Information Systems, Analysis and Synthesis. Orlando, US. V. 2, P. 347–351, 1998.

  5. Denisenko V. V.
    The multigrid method for symmetrized boundary value problems of diffusion in moving medium. Proceedings of the 5-th European Multigrid Conference 1996. Special Topics and Applications. Stuttgart University. P. 35-46. 1998.

  6. Denisenko V. V.
    Guaranteed Precision in Estimations for Hall Conductors that are Based on the Energy Method. Proceedings of the 2nd European Conference on Numerical Mathematics and Advanced Applications. Heidelberg, Germany, 1997. Editors: H. G. Bock, F. Brezzi, R. Glovinski, G. Kanschat, Y. A. Kuznetsov, J. Periaux, R. Rannacher, World Scientific Publishing. 1998. P. 262–269.

  7. Denisenko V. V.
    Multigrid method for a global Hall conductor in the Earth's ionosphere. Virtual Proceedings of the 10-th Anniversary International GAMM — Workshop on Multigrid Methods. Bonn, 1998. http://www.mgnet.org/mgnet-parmgm98.html

  8. Denisenko V. V. and Kitaev A. V.
    Electric field in the ionosphere caused by plasma flow in the plasma sheet. Problems of Geospace 2. Proceedings of the International Conference on Problems of Geocosmos. 1998. St. Petersburg. Publ. Austrian Academy of Sciences, Wien. P. 151–157. 1999.

  9. Denisenko V. V. and Zamay S. S.
    The mathematical model of the ionospheric global conductor. The Solar Wind — Magnetosphere System 3. Eds. H. K. Biernat, Ch. Farrugia, D. Vogl. Osterreichische Akademie der Wissenschaften, Wien. P. 363–370. 2000.

  10. Denisenko V. V.
    The energy method for symmetrized convection-diffusion problems in multiply connected domains. Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, Jyvaskyla, Finland, July 26-30, 1999. Ed. by P. Neittaanmaki, T. Tiihonen and P. Tarvainen. World Scientific, Singapore. P. 381–388. 2000.

  11. Denisenko V. V., Kitaev A. V.
    Electric field generation in the plasma sheet. Proceedings of VIII Joint International Symposium «Atmospheric and ocean optics. Atmospheric physics.» SPIE PRESS. V. 4678. P. 532–537. 2002.

  12. Denisenko V. V.
    Justification of two-dimensional model of ionospheric conductor. // Proceedings of the international conference Symmetry and Differential Equations. Krasnoyarsk. Krasnoyarsk St. University. P. 78-84. 2002. [in Russian]

  13. Denisenko V. V., Mezentsev A. V., Zamay S. S. and Biernat H. K.
    The modification of conductivity due to the movement of ionospheric medium. // Proceedings of the 4th International conference on Problems of Geocosmos. St. Petersburg State University. P. 164–167. 2002.

  14. Denisenko V. V., Kitaev A. V. and Zamay S. S.
    Influence of viscous interaction at the flanks of the magnetospheric tail on the ionospheric electric field. // Proceedings of the 4th International conference on Problems of Geocosmos. St. Petersburg State University. P. 150–153. 2002.

  15. Denisenko V. V., Erkaev N. V., Semenov V. S., Mezetsev A. V., Zamay S. S., Biernat H. K.
    Calculation of the Erosion of the Magnetopause Caused by the Cusp Currents. // Proceedings of the 5th International Conference Problems of Geocosmos. St.-Petersburg. P. 35-38. 2004.

  16. Denisenko V. V., Erkaev N. V., Semenov V. S., Biernat H. K., Arshukova I. L., Mezentsev A. V. and Zamay S. S.
    Erosion of the magnetopause caused by the cusp currents. In: Solar Planetary Relations, Eds. Biernat H. K., Lammer H., Vogl D. F., Muehlbachler S., Research Signpost. P. 143–152. 2005.

  17. Denisenko V. V., N. V. Erkaev, V. S. Semenov, S. S. Zamay, H. K. Biernat.
    Calculation of the Magnetospheric Magnetic Field Perturbation Caused by the Cusp Currents. // Solar-Terrestrial physics. V. 8. Proceedings of the International Conference on the Physics of Solar-Terrestrial Relations. Irkutsk. 2004. P. 126–128. 2005.

  18. Denisenko V. V., H. K. Biernat, N. V. Erkaev, V. S. Semenov.
    Mathematical model of magnetic field perturbations by currents in the Earth's magnetosphere. In: Planetary Radio Emissions VI. Rucker H. O., Kurth W. S., and Mann G. (eds.), Austrian Academy of Sciences Press, Vienna. P. 309–316. 2006.

  19. Denisenko V. V., Biernat H. K., Zamay S. S.
    Modification of conductance due to the acceleration of the ionospheric medium. Collection of the reports of IV International Conference «Solar-Terrestrial bonds and earthquake precursors». Petropavlovsk-Kamchatsky. P. 281–286. 2007.

  20. Horn M., Boudjada M. Y., Biernat H. K., Denisenko V. V., Lammer H., Schwingenschuh K., Prattes G.
    Lithospheric electrostatic field penetration: Influence of the atmospheric and ionospheric conductivity. Collection of the reports of IV International Conference «Solar-Terrestrial bonds and earthquake precursors». Petropavlovsk-Kamchatsky. P. 353–357. 2007.

  21. Denisenko V. V., A. V. Kitaev, H. K. Biernat.
    Two dimensional model of magnetic field transfer through the magnetospheric tail due to plasma flow in the plasma sheet. Proceedings of the 7th International Conference «Problems of Geocosmos» (St. Petersburg, May 26-30, 2008), ed. by V. N. Troyan, M. Hayakawa, and V. S. Semenov. St. Petersburg. P. 52-56. 2008.

Thank you for the attention.

April 15, 2010

Valery Denisenko