ICM SB RAS Russian
Resources :: articles
about institute
structure
employees
academic council
technical base

researches
projects
e-archive

library
feedback
contact us

метеостанция
 

Simultaneously dissipative operators and the infinitesimal moore effect in interval spaces

Gorban A. N., Shokin Yu. I., Verbitskii1 V.I.
arXiv:physics/9702021

Download

Full text of the article [pdf, 232 Kb, in english]

Abstract

In solving a system of ordinary differential equations by an interval method the approximate solution at any considered moment of time t represents a set (called interval) containing the exact solution at the moment t. The intervals determining the solution of a system are often expanded in the course of time irrespective of the method and step used.

The phenomenon of interval expansion, called the Moore sweep effect, essentially decreases the efficiency of interval methods. In the present work the notions of the interval and the Moore effect are formalized and the Infinitesimal Moore Effect (IME) is studied for autonomous systems on positively invariant convex compact. With IME the intervals expand along any trajectory for any small step, and that means that when solving a system by a stepwise interval numerical method with any small step the interval expansion takes place for any initial data irrespective of the applied method. The local conditions of absence of IME in terms of Jacoby matrices field of the system are obtained. The relation between the absence of IME and simultaneous dissipativity of the Jacoby matrices is established, and some sufficient conditions of simultaneous dissipativity are obtained. (The family of linear operators is simultaneously dissipative, if there exists a norm relative to which all the operators are dissipative.)