ICM SB RAS Russian
Resources :: articles
about institute
structure
employees
academic council
technical base

researches
projects
e-archive

library
feedback
contact us

метеостанция
 

Family of additive entropy functions out of thermodynamic limit

Gorban A. N., Karlin I. V.
arXiv:cond-mat/0205511 v1 24 May 2002

Download

Full text of the article [pdf, 118 Kb, in english]

Abstract

Starting with the additivity condition for Lyapunov functions of master equation, we derive a one-parametric family of entropy functions which may be appropriate for a description of certain effects of finiteness of statistical systems, in particular, distribution functions with long tails. This one-parametric family is different from Tsallis entropies, and is essentially a convex combination of the Boltzmann-Gibbs-Shannon entropy and the entropy function introduced by Burg. An example of how longer tails are described within the present approach is worked out for the canonical ensemble. In addition, we discuss a possible origin of a hidden statistical dependence, and give explicit recipes how to construct corresponding generalizations of master equation.