|
|
Обобщенная аппроксимационная теорема и вычислительные возможности нейронных сетей.
Горбань А. Н.
Сибирский журнал вычислительной математики, 1998. Т.1, № 1. С. 12-24
Скачать
Полный текст статьи [pdf, 274 Kb, in russian]
Аннотация
Исследуются вычислительные возможности искусственных нейронных сетей. В связи с этим происходит возврат к классическому вопросу о представлении функций многих переменных с помощью суперпозиций и сумм функций одного переменного и новая редакция этого вопроса (ограничение одной произвольно выбранной нелинейной функцией одного переменного). Показано, что можно получить сколь угодно точное приближение любой непрерывной функции многих переменных, используя операции сложения и умножения на число, суперпозицию функций, линейные функции а также одну произвольную непрерывную нелинейную функцию одной переменной. Для многочленов получен алгебраический вариант теоремы: любой многочлен может от многих переменных быть за конечное число шагов (точно) получен с использованием операций сложения умножения на число и произвольного (одного) многочлена от одного переменного степени выше 1. Аппроксимационная теорема Стоуна переносится с колец функций на любые их алгебры, замкнутые относительно произвольной нелинейной операции, а также относительно сложения и умножения на число. Для нейронных сетей полученные результаты означают: от функции активации нейрона требуется только нелинейность — и более ничего. Какой бы она ни была, можно так построить сеть связей и подобрать коэффициенты линейных связей между нейронами, чтобы нейронная сеть сколь угодно точно вычисляла любую непрерывную функцию от своих входов.
|