| 
	 | 
  | 
Accurate Numerical Solution of Convection-Diffusion Problems. Vol. 1
Bykova E. G., Kalpush T. V., Karepova E.D. Kireev I. V., Pyataev S. F., Rude U., Shaidurov V. V.
 
Ed. by U. Rude and V. V. Shaidurov. — Novosibirsk: Publishing House of Institute of Mathematics of Siberian Branch of the Russian Academy of Sciences, 2001. — Vol. 1. — 252 p. 
Abstract
This book consists of two volumes and is concerned with the results obtained during carrying out the project 'Accurate Numerical Solution of Convection-Diffusion Problems' of the Volkswagen Foundation. 
The first volume is devoted to the results concerning the projective-difference methods of approximation of the convective-diffusion equations with convection dominated and the projective-difference methods of increasing accuracy for the second-order self-ajoint elliptic equations. 
For specialists in computational mathematics. 
Download
Download Table of contents  [pdf, 35 Kb, in english]
 Download Chapter 1  [pdf, 539 Kb, in english]
 Download Chapter 2  [pdf, 303 Kb, in english]
 Download Chapter 3  [pdf, 283 Kb, in english]
 Download Chapter 4  [pdf, 239 Kb, in english]
 Download Chapter 5  [pdf, 289 Kb, in english]
 Download Chapter 6  [pdf, 333 Kb, in english]
 Download Chapter 7  [pdf, 230 Kb, in english]
  Download the whole Vol. 1  [pdf, 1,4 Mb, in english]
Contents
Chapter 1.
Karepova E. D.,
Shaidurov V. V.
 
The finite element method for convection-diffusion convection-dominated problems
 
| Introduction |  
| 1   | One-dimensional convection-diffusion problem |  
 | 1.1   | The differential problem and its properties |  
 | 1.1.1   | Boundary layer |  
 | 1.1.2   | The asymptotic expansion of the solution |  
 | 1.1.3   | The estimates of the remainder term |  
 | 1.1.4   | The weak formulation. The Petrov-Galerkin method |  
 | 1.2   | The finite element method with a linear quadrature rule |  
 | 1.2.1   | Construction of the quadrature rule |  
 | 1.2.2   | Properties of the discrete problem |  
 | 1.2.3   | Convergence result |  
 | 1.3   | The finite element method with nonlinear quadrature rule |  
 | 1.3.1   | Construction of the quadrature rule |  
 | 1.3.2   | Properties of the discrete problem |  
 | 1.3.3   | Convergence theorem |  
| 2   | Two-dimensional convection-diffusion problem |  
 | 2.1   | General remarks  |  
 | 2.1.1   | Qualitative behaviour of the solution |  
 | 2.1.2   | The weak formulation |  
 | 2.2   | The scheme with the fitted quadrature rule for a problem without parabolic boundary layers |  
 | 2.2.1   | The differential problem |  
 | 2.2.2   | Construction of the quadrature rule |  
 | 2.2.3   | Properties of the discrete problem. The convergence result |  
 | 2.3   | Construction of the method for the problem with regular and parabolic boundary layers |  
 | 2.3.1   | Properties of the differential problem |  
 | 2.3.2   | Construction of the fitted quadrature rule |  
 | 2.3.3   | The properties of the discrete problem |  
| 3   | Numerical solution of the discrete problem |  
 | 3.1   | Numerical experiments in the one-dimensional case |  
 | 3.2   | Test example in the two-dimensional case |  
 | 3.3   | The grids |  
 | 3.4   | Methods for solving the discrete problem |  
 | 3.5   | Discussion of the numerical results |  
| References |  
 
 
Chapter 2.
Pyataev S. F.
 
Triangulation of two-dimensional multiply connected domain with concentration and rarefection of grid
 
| Introduction |  
| 1   | Some recommendations on choice of the function of steps |  
| 2   | Fragmentation of the boundary of multiply connected domain |  
| 3   | Triangulation of a domain |  
| 4   | Conclusion |  
| 5   | Appendix 1 |  
| 6   | Appendix 2 |  
| 7   | Appendix 3 |  
| 8   | Appendix 4 |  
| 9   | Appendix 5 |  
| 10   | Appendix 6 |  
| 11   | Appendix 7 |  
| 12   | Appendix 8 |  
References | 
 
 
Chapter 3.
Kireev I. V.,
Pyataev S. F.,
Shaidurov V. V.
 
A batch of applied programs for numerical solution of convection-diffusion boundary-value problem
 
| Introduction |  
| 1   | An algorithm of determination of partial derivatives |  
| 2   | Construction of a sequence of embedded grids |  
| 3   | Program realization of the algorithm |  
 
 
Chapter 4.
Kalpush T. V.,
Shaidurov V. V.
 
A difference scheme for convection-diffusion problem on the oriented grid
 
| Introduction |  
| 1   | The difference problem statement |  
| 2   | The difference approximation of convective item on an arbitrary trianqular stencil |  
| 3   | Construction of inverse-monotone second-order finite-difference scheme  |  
| 4   | The algorithm for the orientation strengthening of the difference grid |  
| 5   | The numerical experiment |  
| References |  
 
Chapter 5.
Bykova E. G., Shaidurov V. V.
 
A two-dimensional nonuniform difference scheme with higher order of accuracy
 
| Introduction |  
| 1   | Boundary-value problem and its nonuniform difference approximation |  
| 2   | Stability and solvability of the grid problem |  
| 3   | Convergence of the nonuniform difference scheme |  
| 4   | Numerical examples |  
| References |  
 
Chapter 6.
Bykova E. G.,
Shaidurov V. V.
 
A nonuniform difference scheme with fourth order of accuracy in a domain with smooth boundary
 
| Introduction |  
| 1   | Boundary-value problem |  
| 2   | Construction of the difference grid and classification of its nodes |  
| 3   | Interpolation formula |  
| 4   | Construction of difference approximation |  
| 5   | Stability, solvability and convergence of the grid problem |  
| 6   | Numerical examples |  
| References |  
 
Chapter 7.
Bykova E. G.,
Rude U.,
Shaidurov V. V.
 
Experimental analysis of fourth-order schemes for Poisson's equations
 
| Introduction |  
| 1   | Formulation of the differential problems |  
| 2   | Tested methods |  
 | 2.1   | Five-point scheme and Richardson extrapolation |  
 | 2.2   | Nonhomogeneous Bykova-Shaidurov scheme |  
 | 2.3   | Khoromskij combination |  
 | 2.4   | Nine-point box scheme |  
| 3   | Two ways to compare the computational cost |  
| References |  
 
 |