ИВМ СО РАН Поиск 
Семинары Института
институт
структура
сотрудники
аспирантура
конференции
семинары
ученый совет
совет молодых ученых
профсоюз
техническая база
история
фотогалерея

исследования
разработки
экспедиции
эл. архив
годовые отчеты

ссылки
библиотека
конкурсы
документы
адреса и телефоны

метеостанция
 

Семинар Красноярского математического центра по прикладной математике

2024 2023 2022 Все ]

Заседание

среда, 24 апреля 2024 г., 16:00, ИВМ СО РАН, каб. 434

Куперштох А. Л., Институт гидродинамики СО РАН, г. Новосибирск
Метод решеточных уравнений Больцмана в задач теплопереноса и электрофизики

Моделирование смачиваемости поверхностей. Силы взаимодействия с твердой стенкой. Контактные углы. Моделирование теплопереноса в LBM. Тестовая задача. Кипение. Капля на подложке. Теплообмен в окрестности контактных линий.

Уравнение Пуассона для потенциала электрического поля. Объемная сила Гельмгольца. Волны электрострикции. Сравнение с аналитическим решением. Капля жидкого диэлектрика на супергидрофобной поверхности в электрическом поле. Динамика пузырька в электрическом поле. Электрический разряд в жидкости. Анизотропный механизм распада чистого диэлектрика. О скорости распространения стримеров в жидкости. Интенсификация теплоотдачи от подложки в неоднородном электрическом поле. Перфорация пленок жидкого диэлектрика в неоднородном электрическом поле. Тепловые трубки. Периодические импульсы электрического поля.

Заседание

вторник, 23 апреля 2024 г., 16:00, ИВМ СО РАН, каб. 434

Куперштох А. Л., Институт гидродинамики СО РАН, г. Новосибирск
Метод решеточных уравнений Больцмана с уравнениями состояния, допускающими фазовые переходы жидкость-пар

Будут представлены основы метода решеточных уравнений Больцмана (LBE, LBM). Уравнение эволюции функций распределения. Метод характеристик. Оператор столкновений. Блок-схема алгоритма. Начальные условия. Метод точной разности для учета объемных сил. Галлилеевская инвариантность. Коммутативность. Сравнение с другими методами учета действия объемных сил. Тест со знакопеременной силой. Разложение Чепмена–Энскога. Граничные условия. Уравнения состояния. Градиент псевдопотенциала. Гибридная изотропная конечно-разностная аппроксимация. Поверхностное натяжение. Безразмерные переменные. Критерий численной устойчивости. Примеры расчетов. Параллельные вычисления на графических процессорах. Спинодальная декомпозиция флюида. Двухкомпонентная система жидкость – растворенный газ.

Заседание

среда, 3 апреля 2024 г., 16:00, ИВМ СО РАН, каб. 434

Рыжков И. И.
Транспорт ионов в нанопорах мембран

В докладе будут рассмотрены механизмы переноса ионов солей в водных растворах в плоских и цилиндрических нанопорах мембран с заряженной поверхностью. Обсуждается динамика формирования двойного электрического слоя внутри нанопор при приложении заданного потенциала к поверхности мембраны. Моделирование осуществляется в двумерной и одномерной постановках на основе уравнений Нернста-Планка и Пуассона для концентрации ионов и электрического потенциала. Приводятся результаты экспериментов по заряжению мембран с электропроводящей поверхностью в водных растворах солей.

Заседание

среда, 27 марта 2024 г., 16:00, ИВМ СО РАН, каб. 434

Рыжков И. И.
Транспорт ионов в нанопорах мембран

В докладе будут рассмотрены механизмы переноса ионов солей в водных растворах в плоских и цилиндрических нанопорах мембран с заряженной поверхностью. Обсуждается динамика формирования двойного электрического слоя внутри нанопор при приложении заданного потенциала к поверхности мембраны. Моделирование осуществляется в двумерной и одномерной постановках на основе уравнений Нернста-Планка и Пуассона для концентрации ионов и электрического потенциала. Приводятся результаты экспериментов по заряжению мембран с электропроводящей поверхностью в водных растворах солей.

2024 2023 2022 Все ]