ИВМ СО РАН Поиск 
Семинары Института
институт
структура
сотрудники
конференции
семинары
ученый совет
совет молодых ученых
профсоюз
техническая база
история
фотогалерея

исследования
разработки
экспедиции
эл. архив
годовые отчеты

ссылки
библиотека
документы
адреса и телефоны

метеостанция
 

Группы и паркетогранники

2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 Все ]

Заседание 07:00 мирового времени

среда, 28 апреля 2021 г., 14:00, Красноярск 9:00 Амстердам, 10:00 мск, zoom

Костэрс Менно Т.(Нидерланды)
Экономные вычисления неокруглённых координат вершин несоставных правильногранных тел и паркетогранников без условных вершин

Работа посвящена нахождению декартовых координат вершин многогранников Джонсона J_{84}, J_{85}, J_{86}, J_{88}, J_{89} и J_{90}; тел Иванова Q_3, Q_4, Q_5 и Пряхина Q_6. Она опирается на результаты А. В. Тимофеенко: Несоставные многогранники, отличные от тел Платона и Архимеда», Фундамент. и прикл. матем., 14:2 (2008), 179–205; Выпуклые правильногранники, не рассекаемые никакой плоскостью на правильногранные части, Матем. тр., 11:1 (2008), 132–152. Доклад можно рассматривать — в некотором отношении — упрощённой и расширенной версией этих результатов. Наши координаты не всегда выбирались точно так же, как в процитированных статьях. Мы будем указывать на соответствие. Вычисления представлены в форме «Jupyter Notebook».

Видеозапись доступна по ссылкам:

https://mfd.sk/jD5px4CBzZ0MCoA06fNpfSde

https://drive.google.com/file/d/1UxD5XMkcC3qtg5P8ryManADiCwf0fkjA/view?usp=sharing

Заседание в 8:00 мирового времени

среда, 14 апреля 2021 г., 15:00, zoom

Костэрс Менно Т.(Нидерланды)
Экономные вычисления неокруглённых координат вершин несоставных правильногранных тел и паркетогранников без условных вершин

Работа посвящена нахождению декартовых координат вершин многогранников Джонсона J_{84}, J_{85}, J_{86}, J_{88}, J_{89} и J_{90}; тел Иванова Q_3, Q_4, Q_5 и Пряхина Q_6. Она опирается на результаты А. В. Тимофеенко: Несоставные многогранники, отличные от тел Платона и Архимеда», Фундамент. и прикл. матем., 14:2 (2008), 179–205; Выпуклые правильногранники, не рассекаемые никакой плоскостью на правильногранные части, Матем. тр., 11:1 (2008), 132–152. Доклад можно рассматривать — в некотором отношении — упрощённой и расширенной версией этих результатов. Наши координаты не всегда выбирались точно так же, как в процитированных статьях. Мы будем указывать на соответствие. Вычисления представлены в форме «Jupyter Notebook».

Видеозапись доступна по ссылкам:

https://mfd.sk/jD5px4CBzZ0MCoA06fNpfSde

https://drive.google.com/file/d/1UxD5XMkcC3qtg5P8ryManADiCwf0fkjA/view?usp=sharing

Заседание в 6:00 мирового времени

среда, 17 марта 2021 г., 13:00, Красноярск, 9:00 мск; zoom

Литаврин Андрей Викторович
Эндоморфизмы конечных коммутативных группоидов, связанных с многослойными нейронными сетями прямого распределения

Доклад посвящен коммутативным, но в общем случае неассоциативным группоидам AGS(N)=(AGS(N),+), состоящим из идемпотентов, т. е. равных своему квадрату элементов. Группоид AGS(N) тесно связан с многослойной нейронной сетью N прямого распределения сигнала (далее просто нейронная сеть). Выяснилось, что в таких нейронных сетях задание подсети фиксированной нейронной сети равносильно заданию некоторого специального кортежа, составленного из конечных множеств нейронов исходной сети. Все специальные кортежи, индуцирующие подсеть нейронной сети N, содержатся в множестве AGS(N). Остальные кортежи из AGS(N) также имеют нейросетевую интерпретацию. Если задано две подсети нейронной сети, то возникает два случая. В первом случае из данных подсетей можно получить новую подсеть путем объединения множеств всех нейронов этих подсетей. Во втором случае такое объединение невозможно, по нейросетевым соображениям. Операция «+» для любых кортежей из AGS(N), индуцирующих подсети, возвращает кортеж, индуцирующий некоторую подсеть, либо возвращает нейтральный элемент, который не индуцирует подсетей.

В докладе освещаются основные алгебраические свойства группоидов AGS(N) и строятся некоторые классы эндоморфизмов таких группоидов. Выяснилось, что всякий конечный моноид G можно изоморфно вложить в моноид всех эндоморфизмов группоида AGS(N) для подходящей сети N. Также будет представлена теорема, выявляющая связь между подсетями нейронной сети N и подгруппоидами группоида AGS(N).

Видеозапись имеется в архиве, а также см.:

Часть 1 https://drive.google.com/file/d/1G1lytIrxJTPDn3onBqMINwSoHCv24oko/view

Часть 2 https://drive.google.com/file/d/1aoRmClbZaJkCReCLfQJpLG_WHBR4VF8g/view

О следующих заседаниях семинара

Заседание в 10:30 мирового времени

пятница, 5 марта 2021 г., 17:30, Красноярск, 13:30 мск; zoom

О В. А. Залгаллере (1920--2020)

Записаны выступления А. В. Тимофеенко и Я. В. Кучериненко.

Тимофеенко Алексей Викторович
Об алгебраических моделях многогранников

Видеозапись см. https://mfd.sk/bmaRpo7AdyaNcOMWcrD8fwjn
Имя файла содержит с точностью до минуты дату начала записи. Координаты применённой в докладе статьи А. В. Тимофеенко, Несоставные многогранники, отличные от тел Платона и Архимеда,Фундамент. и прикл. матем., 2008, том 14, выпуск 2, 179–205:

http://www.mathnet.ru/links/686c2b6b221bc604808bf8313ddfb060/fpm1119.pdf

Заседание в 06:10 мирового времени

среда, 17 февраля 2021 г., 13:10, Красноярск, 09:10 мск; zoom

Тимофеенко Алексей Викторович
О задачах, необходимых для решения проблемы классификации паркетогранников

Будет рассказано о готовящейся к опубликованию в журнале «Компьютерные инструменты в образовании» работе, неокончательное название которой совпадает с названием доклада. Ряд вопросов будет связан не только с классификацией паркетогранников.

О планах развития семинара в 2021–2022 гг

Выносятся на обсуждения мнения о работе семинара в период подготовки к международному математическому конгрессу в С.-Петербурге в 2022 г. и Всероссийскому математическому съезду в 2023 г.

2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 Все ]