ИВМ СО РАН | Поиск |
Семинары Института |
Математические модели и методы интегрированияЗаседаниечетверг, 30 марта 2023 г., 18:00, онлайн
Y. Stepanyants (University of Southern Queensland ), Q. Guo, W. Hu, Z. Zhang
We present exact solutions in the form of solitary waves in the cylindrical Kadomtsev–Petviashvili (cKP) equation (alias Johnson equation) which describes nonlinear wave processes in dispersive media. This equation belongs to the class of completely integrable systems; however, its exact solutions were not studied in detail albeit some particular solutions were found. We show that this equation has relationships with the classical Korteweg–de Vries and plane Kadomtsev–Petviashvili equations. Using these relationships, some new solutions can be formally obtained that represent cylindrically diverging solitary waves and compact solitary waves called lumps. We demonstrate interesting properties of lumps solutions specific for the cylindrical geometry. Exact solutions describing normal and anomalous lump interactions are found and graphically illustrated.
Заседаниечетверг, 16 марта 2023 г., 18:00, онлайн
Е. А. Кузнецов (ФИАН Москва)
The formation of the coherent vortical structures in the form of thin pancakes for three-dimensional flows is studied at the high Reynolds regime when, in the leading order, the development of such structures can be described within the Euler equations for ideal incompressible fluids. Numerically and analytically on the base of the vortex line representation [1, 2] we show that compression of such structures and respectively increase of their amplitudes are possible due to the compressibility of the vorticity in the 3D case [3]. It is demonstrated that this growth has an exponential behavior and can be considered as folding (analog of breaking) for the divergence-free fields of vorticity. At high amplitudes this process in 3D has a self-similar behavior connected the maximal vorticity and the pancake width by the relation of the universal type [4].
[1] E. A. Kuznetsov, V. P. Ruban, Hamiltonian dynamics of vortex lines for systems of the hydrodynamic type, Pis’ma ZhETF, 76, 1015 (1998) [JETP Letters, 67, 10 [2] E. A. Kuznetsov, Vortex line representation for flows of ideal and viscous fluids, Pis’ma v ZHETF, 76, 4 [3] D. S. Agafontsev, E. A. Kuznetsov, A. A. Mailybaev, and E. V. Sereshchenko, Compressible vortex structures and their role in the hydrodynamical turbulence onset, UFN 192, 2 [4] D. S. Agafontsev, E. A. Kuznetsov and A. A. Mailybaev, Development of high vorticity structures and geometrical properties of the vortex line representation, Phys. Fluids 30, 095104-13 (2018); Stability of tangential discontinuity for the vortex pancakes, Pisma ZHETF, 114, 67-71 (2021) [JETP Letters, 2021, 114, 71–75 (2021)]. Заседаниечетверг, 2 марта 2023 г., 18:00, онлайн
С. М. Чурилов (Институт солнечно-земной физики СО РАН, Иркутск)
В слабо стратифицированных течениях рассматриваемого класса наиболее неустойчивые волны занимают существенную трехмерную часть спектра и имеют очень близкие инкременты. Кроме того, их фазовые скорости очень близки, поэтому их индивидуальные критические слои сливаются воедино. Исходя из этого, получены и проанализированы нелинейные эволюционные уравнения, описывающие развитие неустойчивых возмущений. Показано, что на протяжении всей слабо-нелинейной стадии развития амплитуды волн растут взрывным образом, причем на первом (трехволновом) этапе преимущественно усиливается длинноволновая часть спектра, а затем, когда в игру включается множество разнообразных взаимодействий более высокого порядка, коротковолновая часть спектра ее догоняет. Полученные результаты подтверждены численными расчетами эволюции некоторых ансамблей волн.
Заседаниечетверг, 9 февраля 2023 г., 18:00, онлайн
А. В. Боровских (МГУ)
В докладе будут представлены результаты группового анализа уравнения эйконала — уравнения, описывающего фронт распространяющейся волны. Актуальность такого анализа возникла в связи с исследованием распространения волн в неоднородной и анизотропной среде. В волновой теории обычно предполагается, что эйконал уже известен, а на самом деле для каких сред (кроме канонической однородной) уравнение эйконала можно проинтегрировать — было неизвестно.
Групповая классификация сначала трехмерных, затем двумерных, а в конце концов — анизотропных уравнений показала, что задача групповой классификации оказывается наиболее содержательной и продуктивной только в наиболее общей постановке. Именно тогда обнаруживаются четкие связи с геометрией, физикой и аналитическими свойствами уравнений. Именно поэтому полученная классификация, вместе со всей совокупностью указанных связей, может рассматриваться как образцовая. Заседаниечетверг, 26 января 2023 г., 18:00, онлайн
С. М. Чурилов, И. Г. Шухман (Институт солнечно-земной физики СО РАН, Иркутск)
Согласно теореме Ховарда о полукруге, в плоско-параллельном сдвиговом течении V_x = U(z) вещественная часть фазовой скорости c неустойчивого возмущения ~ f(z)exp[ik(x-ct)] лежит в интервале между минимумом и максимумом скорости течения и совпадает с ней на некотором критическом уровне (КУ) z=z_c, Re c = U(z_c). В узкой окрестности КУ, — критическом слое (КС), — жидкие частицы находятся в фазовом резонансе с волной и интенсивно взаимодействуют с ней. В случае идеализированной постановки задачи, не принимающей во внимание диссипацию (вязкость), нестационарность и нелинейность, собственная функция возмущения f(z) имеет особенность на КУ. Учет любого из перечисленных факторов делает решение регулярным, но относительная величина возмущения внутри КС остается большой. Поэтому главные нелинейные взаимодействия происходят внутри КС, что существенно облегчает построение слабо-нелинейной теории эволюции неустойчивого возмущения.
С каждым из указанных факторов связан свой масштаб длины, — вязкий, L_ν = (k^3 Re)^{-1/3} = O(ν^{1/3}), — нестационарный L_t = |(kU'_c A)^{-1} d|A|/dt| = O(γ) — нелинейный L_N ~ |A/U'_c|^δ, где Re – число Рейнольдса, A(t) – амплитуда волны, δ – показатель, зависящий от поведения f(z) на КУ. Больший из этих масштабов определяет не только ширину КС, но и характер решения внутри него. Поэтому уместно различать вязкий, нестационарный и нелинейный КС, имея при этом в виду, что в ходе эволюции возмущения соотношение масштабов и вид КС могут измениться. Анализ показывает, что возможные сценарии эволюции исчерпываются небольшим числом принципиально отличающихся вариантов. Осуществление того или иного сценария зависит, главным образом, от степени надкритичности исходного неустойчивого течения и от характера особенности f(z) на КУ. |
Webmaster |