ИВМ СО РАН Поиск 
Семинары Института
институт
структура
сотрудники
аспирантура
конференции
семинары
ученый совет
совет молодых ученых
профсоюз
техническая база
история
фотогалерея

исследования
разработки
экспедиции
эл. архив
годовые отчеты

ссылки
библиотека
конкурсы
документы
адреса и телефоны

метеостанция
 

Математические модели и методы интегрирования

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 Все ]

Заседание

четверг, 28 декабря 2023 г., 18:00, онлайн

В. Л. Миронов, С. В. Миронов (Институт физики микроструктур РАН, Нижний Новгород)
Седеонные уравнения электромагнитного поля. К вопросу о симметрии между электричеством и магнетизмом

На основе пространственно-временной алгебры седеонов сформулированы симметричные уравнения электромагнитного поля. Подробно обсуждается роль калибровки Лоренца и проводится обобщение калибровочной (градиентной) инвариантности уравнений электромагнитного поля. Рассматривается электродинамика монополей Дирака и дионов Швингера. Обсуждается дионная модель заряженных частиц.

1. V. L. Mironov, S. V. Mironov, Sedeonic equations in field theory, Advances in Applied Clifford Algebras, 30, 44 1-26 (2020).
2. V. L. Mironov, S. V. Mironov, Sedeonic field equations for dyons, Advances in Applied Clifford Algebras, 28(3), 64 1-17 (2018).

Заседание

четверг, 14 декабря 2023 г., 19:30, онлайн

R. Ibragimov (Mathematics & Computer Science, De Gruyter, Boston, MA, USA)
Invariant Solutions of Nonlinear Mathematical Modeling of Natural Phenomena

The main objective is to demonstrate the advantages of the invariance method in obtaining new exact analytic solutions expressed in terms of elementary functions for various physical phenomena. As one particular application of the invariance method will be the mathematical modeling of oceanic and atmospheric whirlpools causing weather instabilities and, possibly, linked with climate change. As another particular example, it will be demonstrated that the invariance method allows to obtain the exact solutions of fully nonlinear Navier-Stokes equations within a thin rotating atmospheric shell that serves as a simple mathematical description of an atmospheric circulation caused by the temperature difference between the equator and the poles with included equatorial flows modeling heat waves, known as Kelvin Waves. Special attention will be given to analyzing and visualizing the conserved densities associated with obtained exact solutions. As another modeling scenario, the exact solution of the shallow water equations simulating equatorial atmospheric waves of planetary scales will be analyzed and visualized.

Заседание

четверг, 30 ноября 2023 г., 18:00, онлайн

Phil Broadbridge (La Trobe University, Australia and IMI-Kyushu University, Japan)
Reaction-diffusion models for fish populations with realistic mobility

Nonlinear reaction-diffusion equations, with Fisher logistic growth and constant diffusion coefficient, have been used in fisheries research to estimate sustainable harvesting rates and critical domain sizes of no-take areas. However, constant diffusivity in a population density corresponds to standard Brownian motion of individuals, with a normal distribution for displacement over a fixed time interval. For available good data sets on mobile fish populations, the distribution is certainly not normal. The data can be fitted with a long-tailed Lévy distribution that corresponds to diffusion by fractional Laplacian.

We have developed exact solutions for realistic Fisher-Kolmogorov-Petrovski-Piscounov models with diffusion by fractional Laplacian. These can also account for a delay in the reaction term. It is then shown how to modify critical domain sizes of protected areas.

Заседание

четверг, 16 ноября 2023 г., 18:00, онлайн

А. В. Шмидт
Приближенное решение модели дальнего безымпульсного турбулентного следа

Для описания течения в дальнем безымпульсном турбулентном следе привлекается модель, основанная на алгебраической модели Роди рейнольдсовых напряжений. Получена автомодельная редукция уравнений модели к системе обыкновенных дифференциальных уравнений. Для построения приближенного решения соответствующей краевой задачи используется асимптотическое разложение решения в окрестности особой точки.

Заседание

четверг, 2 ноября 2023 г., 18:00, онлайн

В. Л. Миронов, С. В. Миронов (Институт физики микроструктур РАН, Нижний Новгород)
Седеонное обобщение уравнений гидродинамики. Вихревые модели плоских турбулентных течений, ограниченных стенками

В докладе обсуждается обобщение уравнений гидродинамики на основе антикоммутативной пространственно-временной алгебры 16-компонентных седеонов. Получена симметричная система уравнений максвелловского типа, которая описывает продольное движение и вращение вихревых трубок. На основе данных уравнений предлагается простая модель плоского полностью развитого турбулентного течения. В качестве примеров рассматриваются турбулентные пристеночные течения, а также течения Куэтта и Пуазейля в прямоугольных каналах.

1. V. L. Mironov, S. V. Mironov, Sedeonic equations in field theory, Advances in Applied Clifford Algebras, 30, 44 1-26 (2020).
2. V. L. Mironov, S. V. Mironov, Generalized sedeonic equations of hydrodynamics, European Physical Journal Plus, 135(9), 708 (2020).
3. V. L. Mironov, S. V. Mironov, Vortex model of plane Couette flow, Fluids, 8(6), 165 (2023).

Заседание

четверг, 19 октября 2023 г., 18:00, онлайн

А. В. Боровских, К. С. Платонова (МГУ, Москва)
Групповой анализ одномерного кинетического уравнения и проблема замыкания моментной системы

Доклад посвящен проблеме, восходящей к работам Максвелла и Клаузиуса — связи между кинетическими уравнениями частиц среды и макроскопическими характеристиками среды. В современной форме вопрос состоит в том, как из кинетических уравнений получить уравнения сплошной среды. Принципиальная проблема состоит в следующем: интегрирование кинетического уравнения со степенными весами по скоростям дает бесконечную систему уравнений, первые из них очень похожи на уравнения сплошной среды. Но система уравнений сплошной среды конечна. Значит, бесконечную систему надо урезать и замкнуть. Проблема состоит из двух вопросов: где урезать и каким соотношением замкнуть. В докладе будет представлен подход, основывающийся на групповых методах. Идея состоит в том, чтобы вычислить группу симметрий кинетического уравнения, перенести ее действие на макроскопические величины, найти инварианты уже в терминах макроскопических величин, и с их помощью построить замыкание. Это удалось с успехом реализовать в одномерном случае, подробности будут представлены в докладе.

Заседание

четверг, 5 октября 2023 г., 18:00, онлайн

О. В. Капцов
Решения некоторых волновых моделей механики

В докладе рассматриваются одномерные нестационарные уравнения с частными производными второго порядка, описывающие волны в неоднородных и нелинейных средах.

Для построения решений используются контактные преобразования и дифференциальные подстановки Эйлера.

Найдены общие решения некоторых нестационарных моделей механики сплошной среды.

Заседание

четверг, 21 сентября 2023 г., 18:00, онлайн

К. Дружков (Российско-Армянский университет, Ереван)
Внутренние лагранжианы как вариационные принципы

Классический принцип стационарного действия связан с лагранжианами, определёнными на пространствах джетов. Соответствующие уравнения движения представляют собой поверхности в таких пространствах. Оказывается, что в дополнение к этому принцип стационарного действия всегда воспроизводит себя на уровне внутренней геометрии соответствующего вариационного уравнения. При этом возникает «внутренний интегральный функционал», определённый на классе особых подмногообразий уравнения. Эти подмногообразия имеют размерность как у решений и склеены из начально-краевых условий, продолженных на старшие производные; в этом смысле они представляют собой «почти решения».

Все решения вариационных уравнений заведомо являются стационарными точками внутренних интегральных функционалов в соответствующих классах почти решений. В зависимости от ситуации стационарными точками таких функционалов могут быть не только решения. Однако если почти решение уравнений Эйлера — Лагранжа склеено из нехарактеристических начально-краевых условий, оно является стационарной точкой соответствующего внутреннего функционала тогда и только тогда, когда оно является решением.

В этой связи удаётся также сформулировать соответствующую версию теоремы Нётер, согласно которой всякая симметрия вариационных уравнений либо определяет законы сохранения, либо порождает внутренние интегральные функционалы.

Предлагаемая конструкция служит ответом на вопрос о том, почему внутренняя геометрия вариационных уравнений знает об их вариационной природе: функционал действие всегда воспроизводит себя внутри соответствующих уравнений с помощью порождаемого им внутреннего функционала.

Заседание

четверг, 25 мая 2023 г., 18:00, онлайн

Е. И. Капцов (Suranaree University of Technology, Thailand), В. А. Дородницын, С. В. Мелешко
Методы построения инвариантных консервативных кончено-разностных схем для уравнений гидродинамического типа

При выборе подходящих конечно-разностных схем для уравнений гидродинамического типа отдают предпочтение различным свойствам схем, таким, как их монотонность, устойчивость, сохранение фазовых объемов и др. В рамках доклада мы сосредотачиваемся на критерии инвариантности схем, т.е. рассматриваем разностные уравнения и сетки, сохраняющие симметрии исходных дифференциальных уравнений.

Для уравнений гидродинамического типа конструирование инвариантных разностных схем зачастую существенно упрощается, если рассматривать уравнения в координатах Лагранжа, – в этом случае могут быть использованы простейшие равномерные ортогональные сетки, которые сохраняют свою геометрическую структуру при действии групповых преобразований, наследуемых от исходных уравнений. Кроме того, в координатах Лагранжа облегчается отыскание законов сохранения как для дифференциальных уравнений, так и для соответствующих инвариантных разностных схем. В ряде случаев удается построить инвариантные консервативные схемы, обладающие разностными аналогами всех локальных законов сохранения исходных моделей.

Доклад в первую очередь посвящен практическим аспектам конструирования схем описанного типа. Для этого выработан ряд специальных приемов и методов. Наиболее удобным оказывается разностный аналог прямого метода, а также техника построение схем по аппроксимациям законов сохранения.
В качестве основных примеров рассматриваются различные уравнения теории мелкой воды и одномерные уравнения магнитной гидродинамики.

Ссылки

1. Dorodnitsyn V. A., Kaptsov E. I., Discrete shallow water equations preserving symmetries and conservation laws. J. Math. Phys., 62(8):083508, 2021.
2. Kaptsov E. I., Dorodnitsyn V. A., Meleshko S. V., Conservative invariant finite-difference schemes for the modified shallow water equations in Lagrangian coordinates. Stud. Appl. Math., 2022; 149: 729–761.
3. Dorodnitsyn V. A., Kaptsov E. I., and Meleshko S. V., Symmetries, conservation laws, invariant solutions and difference schemes of the one-dimensional Green–Naghdi equations. J. Nonlinear Math. Phys., 28:90–107, 2020.
4. Cheviakov A. F., Dorodnitsyn V. A., Kaptsov E. I., Invariant conservation law-preserving discretizations of linear and nonlinear wave equations, J. Math. Phys., 61 (2020) P. 081504.
5. Dorodnitsyn V. A., Kaptsov E. I., Invariant finite-difference schemes for plane one-dimensional MHD flows that preserve conservation laws. Mathematics, 10(8):1250, 2022.
6. Kaptsov E. I., Dorodnitsyn V. A., Invariant conservative finite-difference schemes for the one-dimensional shallow water magnetohydrodynamics equations in Lagrangian coordinates. Submitted. Preprint: https://arxiv.org/abs/2304.03488
7. Kaptsov E. I., Dorodnitsyn V. A., Meleshko S. V., Invariant finite-difference schemes for cylindrical one-dimensional MHD flows with conservation laws preservation. Submitted. Preprint: http://dx.doi.org/10.48550/arXiv.2302.05280

Заседание

четверг, 11 мая 2023 г., 18:00, онлайн

Б. И. Сулейманов (Институт математики с вычислительным центром УФИЦ РАН, Уфа)
Мероморфность решений широкого класса обыкновенных дифференциальных уравнений типа Пенлеве

Доклад основан на двух совместных с А. В. Домриным и М. А. Шумкиным публикациях.
1. Домрин А. В., Сулейманов Б. И., Шумкин М. А. О глобальной мероморфности решений уравнений Пенлеве и их иерархий. Анализ и математическая физика, Сборник статей. К 70-летию со дня рождения профессора Армена Глебовича Сергеева, Тр. МИАН, 311, МИАН, М., 2020, 106–122 (A. V. Domrin,, B. I. Suleimanov, and M. A. Shumkin. Global Meromorphy of Solutions of the Painlevé Equations and Their Hierarchies. Proceedings of the Steklov Institute of Mathematics, 2020, Vol. 311, Issue 1, pp. 98–113).
2. V. Domrin, M. A. Shumkin and B. I. Suleimanov. Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type. Journal of Mathematical Physics. Vol.: 63. Issue 2 (2022).

Отталкиваясь от на результатов А. В. Домрина о локальной по времени мероморфной продолжимости из области аналитчности решений солитонных уравнений параболического типа, в докладе будет доказана мероморфность решений начальных задач для широкого класса обыкновенных дифференциальных уравнений. Эти обыкновенные дифференциальные уравнения задаются инвариантными многообразиями нелинейных уравнений в частных производных параболического типа, интегрируемых методом обратной задачи рассеяния. В качестве примеров рассмотрены случаи некоторых из уравнений Пенлеве и их иерархий.

Заседание

четверг, 27 апреля 2023 г., 18:00, онлайн

K. R. Khusnutdinova (Department of Mathematical Sciences, Loughborough University, UK)
On elliptic cylindrical Kadomtsev-Petviashvili equation for surface waves

There exist two classical versions of the Kadomtsev-Petviashvili (KP) equation [1], related to the Cartesian and cylindrical geometries of the waves (derivations for surface waves were given in [2] and [3], respectively). We derived and studied a version related to the elliptic-cylindrical geometry in [4] (joint work with Klein, Matveev and Smirnov). The derivation was given from the full set of Euler equations for surface gravity waves with the account of surface tension. The ecKP equation contains a parameter, and it reduces to the cKP equation both when this parameter tends to zero, and when the solutions are considered at distances much larger than that parameter. We showed that there exist transformations between all three versions of the KP equation associated with the physical problem formulation (KP, cKP and ecKP equations), and used them to obtain new classes of approximate solutions for the Euler equations. The solutions exist on the whole plane (at least formally). We hope that they could be useful in describing an intermediate asymptotics for the problems where sources, boundaries and obstacles have elliptic or nearly-elliptic geometry.

References:
[1] B. P. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15 (1970) 539–541.
[2] M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979) 691–715.
[3] R. S. Johnson, Water waves and Korteweg — de Vries equations, J. Fluid Mech., 97 (1980) 701–719.
[4] K. R. Khusnutdinova, C. Klein, V. B. Matveev, A. O. Smirnov, On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation, Chaos 23 (2013) 013126.

Заседание

четверг, 13 апреля 2023 г., 18:00, онлайн

М. В. Павлов (ФИАН, Москва)
Эллиптические ортогональные системы координат и разделение переменных в операторе Лапласа

Разделение переменных в системах уравнений в частных производных — одна из важных и интересных задач. Прекрасный обзор этой области был представлен в книге Э. Т. Уиттекера и Дж. Н. Ватсона в 1905 году.

В докладе будет предложена интерпретация известных результатов, которая позволит лучше понять препятствия и возможности в теории разделения независимых переменных.

Заседание

четверг, 30 марта 2023 г., 18:00, онлайн

Y. Stepanyants (University of Southern Queensland ), Q. Guo, W. Hu, Z. Zhang
Solitary waves in the cylindrical Kadomtsev–Petviashvili equation

We present exact solutions in the form of solitary waves in the cylindrical Kadomtsev–Petviashvili (cKP) equation (alias Johnson equation) which describes nonlinear wave processes in dispersive media. This equation belongs to the class of completely integrable systems; however, its exact solutions were not studied in detail albeit some particular solutions were found. We show that this equation has relationships with the classical Korteweg–de Vries and plane Kadomtsev–Petviashvili equations. Using these relationships, some new solutions can be formally obtained that represent cylindrically diverging solitary waves and compact solitary waves called lumps. We demonstrate interesting properties of lumps solutions specific for the cylindrical geometry. Exact solutions describing normal and anomalous lump interactions are found and graphically illustrated.

Заседание

четверг, 16 марта 2023 г., 18:00, онлайн

Е. А. Кузнецов (ФИАН Москва)
Folding in fluids

The formation of the coherent vortical structures in the form of thin pancakes for three-dimensional flows is studied at the high Reynolds regime when, in the leading order, the development of such structures can be described within the Euler equations for ideal incompressible fluids. Numerically and analytically on the base of the vortex line representation [1, 2] we show that compression of such structures and respectively increase of their amplitudes are possible due to the compressibility of the vorticity in the 3D case [3]. It is demonstrated that this growth has an exponential behavior and can be considered as folding (analog of breaking) for the divergence-free fields of vorticity. At high amplitudes this process in 3D has a self-similar behavior connected the maximal vorticity and the pancake width by the relation of the universal type [4].

[1] E. A. Kuznetsov, V. P. Ruban, Hamiltonian dynamics of vortex lines for systems of the hydrodynamic type, Pis’ma ZhETF, 76, 1015 (1998) [JETP Letters, 67, 1076–1081 (1998)].

[2] E. A. Kuznetsov, Vortex line representation for flows of ideal and viscous fluids, Pis’ma v ZHETF, 76, 406–410 (2002) [JETP Letters, 76, 346–350 (2002)].

[3] D. S. Agafontsev, E. A. Kuznetsov, A. A. Mailybaev, and E. V. Sereshchenko, Compressible vortex structures and their role in the hydrodynamical turbulence onset, UFN 192, 205–225 (2022) [Physics Uspekhi, 65 189 — 208 (2022)].

[4] D. S. Agafontsev, E. A. Kuznetsov and A. A. Mailybaev, Development of high vorticity structures and geometrical properties of the vortex line representation, Phys. Fluids 30, 095104-13 (2018); Stability of tangential discontinuity for the vortex pancakes, Pisma ZHETF, 114, 67-71 (2021) [JETP Letters, 2021, 114, 71–75 (2021)].

Заседание

четверг, 2 марта 2023 г., 18:00, онлайн

С. М. Чурилов (Институт солнечно-земной физики СО РАН, Иркутск)
Слабо-нелинейная стадия развития неустойчивости в сдвиговых течениях с профилем скорости без точек перегиба и тонким пикноклином

В слабо стратифицированных течениях рассматриваемого класса наиболее неустойчивые волны занимают существенную трехмерную часть спектра и имеют очень близкие инкременты. Кроме того, их фазовые скорости очень близки, поэтому их индивидуальные критические слои сливаются воедино. Исходя из этого, получены и проанализированы нелинейные эволюционные уравнения, описывающие развитие неустойчивых возмущений. Показано, что на протяжении всей слабо-нелинейной стадии развития амплитуды волн растут взрывным образом, причем на первом (трехволновом) этапе преимущественно усиливается длинноволновая часть спектра, а затем, когда в игру включается множество разнообразных взаимодействий более высокого порядка, коротковолновая часть спектра ее догоняет. Полученные результаты подтверждены численными расчетами эволюции некоторых ансамблей волн.

Заседание

четверг, 9 февраля 2023 г., 18:00, онлайн

А. В. Боровских (МГУ)
Групповой анализ уравнения эйконала

В докладе будут представлены результаты группового анализа уравнения эйконала — уравнения, описывающего фронт распространяющейся волны. Актуальность такого анализа возникла в связи с исследованием распространения волн в неоднородной и анизотропной среде. В волновой теории обычно предполагается, что эйконал уже известен, а на самом деле для каких сред (кроме канонической однородной) уравнение эйконала можно проинтегрировать — было неизвестно.

Групповая классификация сначала трехмерных, затем двумерных, а в конце концов — анизотропных уравнений показала, что задача групповой классификации оказывается наиболее содержательной и продуктивной только в наиболее общей постановке. Именно тогда обнаруживаются четкие связи с геометрией, физикой и аналитическими свойствами уравнений. Именно поэтому полученная классификация, вместе со всей совокупностью указанных связей, может рассматриваться как образцовая.

Заседание

четверг, 26 января 2023 г., 18:00, онлайн

С. М. Чурилов, И. Г. Шухман (Институт солнечно-земной физики СО РАН, Иркутск)
Критический слой и слабо-нелинейная эволюция неустойчивых квазимонохроматических возмущений в сдвиговых течениях

Согласно теореме Ховарда о полукруге, в плоско-параллельном сдвиговом течении V_x = U(z) вещественная часть фазовой скорости c неустойчивого возмущения ~ f(z)exp[ik(x-ct)] лежит в интервале между минимумом и максимумом скорости течения и совпадает с ней на некотором критическом уровне (КУ) z=z_c, Re c = U(z_c). В узкой окрестности КУ, — критическом слое (КС), — жидкие частицы находятся в фазовом резонансе с волной и интенсивно взаимодействуют с ней. В случае идеализированной постановки задачи, не принимающей во внимание диссипацию (вязкость), нестационарность и нелинейность, собственная функция возмущения f(z) имеет особенность на КУ. Учет любого из перечисленных факторов делает решение регулярным, но относительная величина возмущения внутри КС остается большой. Поэтому главные нелинейные взаимодействия происходят внутри КС, что существенно облегчает построение слабо-нелинейной теории эволюции неустойчивого возмущения.

С каждым из указанных факторов связан свой масштаб длины, 
— вязкий, L_ν = (k^3 Re)^{-1/3} = O(ν^{1/3}),
— нестационарный L_t = |(kU'_c A)^{-1} d|A|/dt| = O(γ)
— нелинейный L_N ~ |A/U'_c|^δ,

где Re – число Рейнольдса, A(t) – амплитуда волны, δ – показатель, зависящий от поведения f(z) на КУ. Больший из этих масштабов определяет не только ширину КС, но и характер решения внутри него. Поэтому уместно различать вязкий, нестационарный и нелинейный КС, имея при этом в виду, что в ходе эволюции возмущения соотношение масштабов и вид КС могут измениться. 

Анализ показывает, что возможные сценарии эволюции исчерпываются небольшим числом принципиально отличающихся вариантов. Осуществление того или иного сценария зависит, главным образом, от степени надкритичности исходного неустойчивого течения и от характера особенности f(z) на КУ.

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 Все ]